Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6646364107753170912861712 ~2017
6647717378313295434756712 ~2016
6647945972313295891944712 ~2016
6648248609913296497219912 ~2016
6648364577913296729155912 ~2016
6648550349913297100699912 ~2016
6649460396313298920792712 ~2016
6649948847913299897695912 ~2016
6651666109113303332218312 ~2016
6652171754313304343508712 ~2016
6652399206139914395236712 ~2017
6652640953113305281906312 ~2016
6653858299113307716598312 ~2016
6653903689113307807378312 ~2016
6654666245913309332491912 ~2016
6654909013113309818026312 ~2016
6655090760313310181520712 ~2016
6655403945913310807891912 ~2016
6655541609913311083219912 ~2016
6655689461913311378923912 ~2016
6656213607739937281646312 ~2017
6656216704366562167043112 ~2017
6656343397113312686794312 ~2016
6656423297913312846595912 ~2016
6657023144313314046288712 ~2016
Exponent Prime Factor Dig. Year
6657301178313314602356712 ~2016
6657760234753262081877712 ~2017
6657878303913315756607912 ~2016
6657949865913315899731912 ~2016
6658416175113316832350312 ~2016
6658613277166586132771112 ~2017
6658630568313317261136712 ~2016
6658782817113317565634312 ~2016
6659233289913318466579912 ~2016
6660694058313321388116712 ~2016
6660958879113321917758312 ~2016
6661025791113322051582312 ~2016
6661271889739967631338312 ~2017
6661447615113322895230312 ~2016
6661784054313323568108712 ~2016
6661812176313323624352712 ~2016
6662184047913324368095912 ~2016
6662340464313324680928712 ~2016
6662460598153299684784912 ~2017
6662461550313324923100712 ~2016
6662470748313324941496712 ~2016
6662618206153300945648912 ~2017
6662754553113325509106312 ~2016
6663053651913326107303912 ~2016
6663323017113326646034312 ~2016
Exponent Prime Factor Dig. Year
6664318292313328636584712 ~2016
6664577531953316620255312 ~2017
6665080733913330161467912 ~2016
6666105575913332211151912 ~2016
6667030699113334061398312 ~2016
6667375069113334750138312 ~2016
6667416332313334832664712 ~2016
6667471928313334943856712 ~2016
6668031829113336063658312 ~2016
6668212943913336425887912 ~2016
6668548532313337097064712 ~2016
6668657785113337315570312 ~2016
6669338110366693381103112 ~2017
6670614953913341229907912 ~2016
6670738921113341477842312 ~2016
6670745993913341491987912 ~2016
6671446069113342892138312 ~2016
6671707715913343415431912 ~2016
6671787013340030722079912 ~2017
6671858120313343716240712 ~2016
6672110362366721103623112 ~2017
6672169226953377353815312 ~2017
6673036091913346072183912 ~2016
6673320191913346640383912 ~2016
6673652657913347305315912 ~2016
Exponent Prime Factor Dig. Year
6674192744313348385488712 ~2016
6674430017913348860035912 ~2016
6674563609113349127218312 ~2016
6674762395113349524790312 ~2016
6674810161113349620322312 ~2016
6674859703113349719406312 ~2016
6675098243913350196487912 ~2016
6675260417913350520835912 ~2016
6675482312313350964624712 ~2016
6676283521113352567042312 ~2016
6676611959913353223919912 ~2016
6677201066313354402132712 ~2016
667811862114928...42371914 2023
6678146741340068880447912 ~2017
6678392387913356784775912 ~2016
6678426779913356853559912 ~2016
6678613057113357226114312 ~2016
6678636793740071820762312 ~2017
6678684727153429477816912 ~2017
6679713865113359427730312 ~2016
6680010107913360020215912 ~2016
6680522348313361044696712 ~2016
6680694098313361388196712 ~2016
6681088289913362176579912 ~2016
6681341090313362682180712 ~2016
Home
4.768.925 digits
e-mail
25-05-04