Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6273633990137641803940712 ~2017
6274494809912548989619912 ~2015
6274685285912549370571912 ~2015
6275808875912551617751912 ~2015
6275986670312551973340712 ~2015
6275996857112551993714312 ~2015
6276198640750209589125712 ~2017
6276512279337659073675912 ~2017
6276591127737659546766312 ~2017
6276670723112553341446312 ~2015
6277161811112554323622312 ~2015
6277366461737664198770312 ~2017
6277730431112555460862312 ~2015
6278101796312556203592712 ~2015
6278346667150226773336912 ~2017
6279401671112558803342312 ~2015
6279568035737677408214312 ~2017
6280093304312560186608712 ~2015
6280266989912560533979912 ~2015
6280441867150243534936912 ~2017
6280569863912561139727912 ~2015
6280858424312561716848712 ~2015
6281160761912562321523912 ~2015
6281461672750251693381712 ~2017
6282211003112564422006312 ~2015
Exponent Prime Factor Dig. Year
6282714017912565428035912 ~2015
6282823388312565646776712 ~2015
6282953654312565907308712 ~2015
6282991861112565983722312 ~2015
6283973927912567947855912 ~2015
6284389466950275115735312 ~2017
6284607638312569215276712 ~2015
6284614463912569228927912 ~2015
6284710361912569420723912 ~2015
6284792927912569585855912 ~2015
6284797115912569594231912 ~2015
6285170653112570341306312 ~2015
6285233767962852337679112 ~2017
6285629815737713778894312 ~2017
6285891304362858913043112 ~2017
6285900025112571800050312 ~2015
6286994005150295952040912 ~2017
6287347261112574694522312 ~2015
6287683485737726100914312 ~2017
6287697074312575394148712 ~2015
6287825015912575650031912 ~2015
6288406988312576813976712 ~2015
6288853241912577706483912 ~2015
6290242058312580484116712 ~2015
6290808565112581617130312 ~2015
Exponent Prime Factor Dig. Year
629083076412063...90624914 2024
6291029306312582058612712 ~2015
6291182353112582364706312 ~2015
6291655211912583310423912 ~2015
6291774053337750644319912 ~2017
6291804020312583608040712 ~2015
6292007594312584015188712 ~2015
6292227505112584455010312 ~2015
6292764032312585528064712 ~2015
6293209541912586419083912 ~2015
6293324664762933246647112 ~2017
6293743681112587487362312 ~2015
6294633290312589266580712 ~2015
6294952399112589904798312 ~2015
6295231988312590463976712 ~2015
6295249886312590499772712 ~2015
6295610009912591220019912 ~2015
6296024633912592049267912 ~2015
6296086426150368691408912 ~2017
6296694874137780169244712 ~2017
6296750701337780504207912 ~2017
6297131570312594263140712 ~2015
6297732299950381858399312 ~2017
6297822103737786932622312 ~2017
6297870216137787221296712 ~2017
Exponent Prime Factor Dig. Year
6298308401912596616803912 ~2015
6298878834137793273004712 ~2017
6299293166312598586332712 ~2015
6299302429112598604858312 ~2015
6300466772312600933544712 ~2015
6300703793912601407587912 ~2015
6301008974312602017948712 ~2015
6301240118312602480236712 ~2015
6301298734750410389877712 ~2017
6301635571112603271142312 ~2015
6301797356312603594712712 ~2015
6302351183912604702367912 ~2015
6302585378312605170756712 ~2015
6303211973912606423947912 ~2015
6303333572312606667144712 ~2015
6303615271337821691627912 ~2017
6304060834750432486677712 ~2017
6304418203112608836406312 ~2015
6304660416137827962496712 ~2017
6304770515912609541031912 ~2015
6305074172312610148344712 ~2015
6305382491912610764983912 ~2015
6306049079912612098159912 ~2015
6306066073112612132146312 ~2015
6306421681112612843362312 ~2015
Home
4.768.925 digits
e-mail
25-05-04