Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5397355885110794711770312 ~2015
5397870421110795740842312 ~2015
5397963864132387783184712 ~2016
5398119667743184957341712 ~2016
5398799312310797598624712 ~2015
5399829398310799658796712 ~2015
5400173297910800346595912 ~2015
5400667795110801335590312 ~2015
5401078759110802157518312 ~2015
540136587919160...30953714 2024
5401471717332408830303912 ~2016
5401605781110803211562312 ~2015
5401841653110803683306312 ~2015
5402051533110804103066312 ~2015
5402720258310805440516712 ~2015
5402854934310805709868712 ~2015
5403316082310806632164712 ~2015
5403394249110806788498312 ~2015
5403455783375648380966312 ~2017
5403512000310807024000712 ~2015
5403653479110807306958312 ~2015
5403979301910807958603912 ~2015
5404120903110808241806312 ~2015
5404784723910809569447912 ~2015
540479947031480...54862314 2023
Exponent Prime Factor Dig. Year
5405031896310810063792712 ~2015
5405332003110810664006312 ~2015
5405677999143245423992912 ~2016
5405718163110811436326312 ~2015
5406781242754067812427112 ~2017
5406962948310813925896712 ~2015
5406998297910813996595912 ~2015
5407771393954077713939112 ~2017
5408519467143268155736912 ~2016
5408685290310817370580712 ~2015
5408755171110817510342312 ~2015
5408857937910817715875912 ~2015
5409192825154091928251112 ~2017
5409437687910818875375912 ~2015
5409791210310819582420712 ~2015
5409919615732459517694312 ~2016
5409953159910819906319912 ~2015
5410463137732462778826312 ~2016
5410477147110820954294312 ~2015
5410487275110820974550312 ~2015
5410608614310821217228712 ~2015
5410627951110821255902312 ~2015
5410903040310821806080712 ~2015
5411343727110822687454312 ~2015
5411449589910822899179912 ~2015
Exponent Prime Factor Dig. Year
5411508791910823017583912 ~2015
5411612071110823224142312 ~2015
5412050531910824101063912 ~2015
5412210726132473264356712 ~2016
5412626437110825252874312 ~2015
5412651436132475908616712 ~2016
5412696393732476178362312 ~2016
5413048003110826096006312 ~2015
5413198385910826396771912 ~2015
5413417019910826834039912 ~2015
5413646615910827293231912 ~2015
5413672994310827345988712 ~2015
5413869155910827738311912 ~2015
5414061853732484371122312 ~2016
5414246673732485480042312 ~2016
5414445421332486672527912 ~2016
5414687636310829375272712 ~2015
5414780239110829560478312 ~2015
5415374797110830749594312 ~2015
5415603901110831207802312 ~2015
5416019131110832038262312 ~2015
5416067837943328542703312 ~2016
5416076573332496459439912 ~2016
5416276775910832553551912 ~2015
5416335495732498012974312 ~2016
Exponent Prime Factor Dig. Year
5416361719110832723438312 ~2015
5416626650310833253300712 ~2015
5417399326143339194608912 ~2016
5417534443732505206662312 ~2016
5417914513110835829026312 ~2015
5417931161910835862323912 ~2015
5418027298132508163788712 ~2016
5418414012132510484072712 ~2016
5418432110975858049552712 ~2017
5419214683732515288102312 ~2016
5419460143143355681144912 ~2016
5419782896310839565792712 ~2015
5420297887110840595774312 ~2015
5420834850132525009100712 ~2016
542097967331691...58069714 2024
5421724153110843448306312 ~2015
5421779408310843558816712 ~2015
5421959852310843919704712 ~2015
5421963464310843926928712 ~2015
5422121347110844242694312 ~2015
5423367557910846735115912 ~2015
5423713779732542282678312 ~2016
542396394711615...34463915 2023
5424094139910848188279912 ~2015
5424427195743395417565712 ~2016
Home
4.768.925 digits
e-mail
25-05-04