Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5111961437910223922875912 ~2015
5112033488310224066976712 ~2015
5112202403910224404807912 ~2015
5112418759110224837518312 ~2015
5112435323910224870647912 ~2015
5113026457110226052914312 ~2015
5113273855110226547710312 ~2015
5113437015151134370151112 ~2016
5113540343910227080687912 ~2015
5114129161110228258322312 ~2015
511420091113610...43236714 2024
5114648984310229297968712 ~2015
5115214694310230429388712 ~2015
5115501793140924014344912 ~2016
5115524387910231048775912 ~2015
5115867427110231734854312 ~2015
5116024645110232049290312 ~2015
5116993100310233986200712 ~2015
5117058847110234117694312 ~2015
5117472872310234945744712 ~2015
5117663057910235326115912 ~2015
5117741282310235482564712 ~2015
5118071694130708430164712 ~2016
5118318305910236636611912 ~2015
5118602965110237205930312 ~2015
Exponent Prime Factor Dig. Year
5118927575910237855151912 ~2015
5119340173330716041039912 ~2016
5119594283910239188567912 ~2015
5119918159110239836318312 ~2015
5120202293910240404587912 ~2015
5120407477140963259816912 ~2016
5120795324310241590648712 ~2015
5121614129910243228259912 ~2015
5122068817110244137634312 ~2015
5122123688310244247376712 ~2015
5122160942310244321884712 ~2015
5122443045151224430451112 ~2016
5122908241740983265933712 ~2016
5123061763740984494109712 ~2016
5123086118310246172236712 ~2015
5123147797110246295594312 ~2015
5123826895110247653790312 ~2015
5125132028310250264056712 ~2015
5125165375110250330750312 ~2015
5125411591730752469550312 ~2016
5125511902141004095216912 ~2016
5125985845951259858459112 ~2016
5126482705110252965410312 ~2015
5127019528141016156224912 ~2016
5127027543730762165262312 ~2016
Exponent Prime Factor Dig. Year
5127544594351275445943112 ~2016
5127591497910255182995912 ~2015
5127606232351276062323112 ~2016
5127742109910255484219912 ~2015
5127936679110255873358312 ~2015
5128218493110256436986312 ~2015
5128223390310256446780712 ~2015
5128632971910257265943912 ~2015
5128682492310257364984712 ~2015
5128722215910257444431912 ~2015
5128756121910257512243912 ~2015
5128774745330772648471912 ~2016
5128967313151289673131112 ~2016
5129136223110258272446312 ~2015
5129463410310258926820712 ~2015
5129514367110259028734312 ~2015
5129625037110259250074312 ~2015
5129746442310259492884712 ~2015
5129922969730779537818312 ~2016
5130622013910261244027912 ~2015
5130932264310261864528712 ~2015
5131036850310262073700712 ~2015
5131047031330786282187912 ~2016
5131766048310263532096712 ~2015
5132532665910265065331912 ~2015
Exponent Prime Factor Dig. Year
5132677519110265355038312 ~2015
5132717117330796302703912 ~2016
5132922053910265844107912 ~2015
5134445083110268890166312 ~2015
5134611635910269223271912 ~2015
5134621591110269243182312 ~2015
5135244703110270489406312 ~2015
5135324395951353243959112 ~2016
5136292904310272585808712 ~2015
5136691469910273382939912 ~2015
5136744764310273489528712 ~2015
5136822500971915515012712 ~2017
5136851509110273703018312 ~2015
5137246933110274493866312 ~2015
5137272802741098182421712 ~2016
5137404565951374045659112 ~2016
5137516255110275032510312 ~2015
5137753804141102030432912 ~2016
513781157414716...25023914 2023
5137864871910275729743912 ~2015
5137972157941103777263312 ~2016
5138351471910276702943912 ~2015
5138673733110277347466312 ~2015
5138755343910277510687912 ~2015
5138857778310277715556712 ~2015
Home
4.768.925 digits
e-mail
25-05-04