Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5061177029910122354059912 ~2015
5061589687110123179374312 ~2015
5062074421110124148842312 ~2015
506214376631943...06259314 2023
5062320409110124640818312 ~2015
506257050791555...00268915 2023
5062667520130376005120712 ~2016
5062816274310125632548712 ~2015
5062992809910125985619912 ~2015
5063568865140508550920912 ~2016
5064022739910128045479912 ~2015
5064058901910128117803912 ~2015
5064077604750640776047112 ~2016
5064556217910129112435912 ~2015
5064655763910129311527912 ~2015
5064791449110129582898312 ~2015
5065040505150650405051112 ~2016
5065078259910130156519912 ~2015
5065109306310130218612712 ~2015
5065266167910130532335912 ~2015
5065541161730393246970312 ~2016
5065640305330393841831912 ~2016
5066040337730396242026312 ~2016
5066085001110132170002312 ~2015
5066196497330397178983912 ~2016
Exponent Prime Factor Dig. Year
5066280059910132560119912 ~2015
5066456132310132912264712 ~2015
5066871475740534971805712 ~2016
5067490309330404941855912 ~2016
5067555535110135111070312 ~2015
5067730927110135461854312 ~2015
5067734834310135469668712 ~2015
5067745832310135491664712 ~2015
5068411174130410467044712 ~2016
5068640159910137280319912 ~2015
5068983344310137966688712 ~2015
5069143627770968010787912 ~2017
5069379313110138758626312 ~2015
5069536700310139073400712 ~2015
5069578769910139157539912 ~2015
5069688265110139376530312 ~2015
5069857678350698576783112 ~2016
5070040829910140081659912 ~2015
5070115417140560923336912 ~2016
5070329131110140658262312 ~2015
5070463298310140926596712 ~2015
5071016519910142033039912 ~2015
5071516703910143033407912 ~2015
5071726495730430358974312 ~2016
5072412449910144824899912 ~2015
Exponent Prime Factor Dig. Year
5072500340310145000680712 ~2015
5072627194130435763164712 ~2016
5073746749110147493498312 ~2015
5073771076130442626456712 ~2016
5073822456130442934736712 ~2016
5074182431910148364863912 ~2015
5074234308130445405848712 ~2016
5074271539330445629235912 ~2016
5074369234740594953877712 ~2016
5074371979110148743958312 ~2015
5075162992740601303941712 ~2016
5076072278310152144556712 ~2015
5076079667910152159335912 ~2015
5076209889730457259338312 ~2016
5076705697110153411394312 ~2015
5077474165110154948330312 ~2015
5077531277910155062555912 ~2015
5077728397110155456794312 ~2015
5077757780310155515560712 ~2015
5078028949110156057898312 ~2015
5078497475910156994951912 ~2015
5078689483110157378966312 ~2015
5078755742310157511484712 ~2015
5079243836310158487672712 ~2015
5079292195110158584390312 ~2015
Exponent Prime Factor Dig. Year
5079318293910158636587912 ~2015
5079389657910158779315912 ~2015
5080097365110160194730312 ~2015
5080689403110161378806312 ~2015
5081031779940648254239312 ~2016
5081712124140653696992912 ~2016
5081780647110163561294312 ~2015
5081910127110163820254312 ~2015
5082714026310165428052712 ~2015
5083045760310166091520712 ~2015
5083099402140664795216912 ~2016
5083510874310167021748712 ~2015
5083894394310167788788712 ~2015
5083966237110167932474312 ~2015
5084004047910168008095912 ~2015
5084856782310169713564712 ~2015
5084887760310169775520712 ~2015
5084888450310169776900712 ~2015
5085262519140682100152912 ~2016
5085430961330512585767912 ~2016
5085462046350854620463112 ~2016
5085481166940683849335312 ~2016
5085765323330514591939912 ~2016
5085829430310171658860712 ~2015
5085888566310171777132712 ~2015
Home
4.768.925 digits
e-mail
25-05-04