Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
493206555835146...35302315 2023
493269293039865385860711 ~2015
4932788323329596729939912 ~2016
493290038519865800770311 ~2015
493325755319866515106311 ~2015
493332517439866650348711 ~2015
493359978719867199574311 ~2015
4933825614749338256147112 ~2016
493396091039867921820711 ~2015
493411371719868227434311 ~2015
493413710399868274207911 ~2015
493442965919868859318311 ~2015
493484712839869694256711 ~2015
493489501799869790035911 ~2015
493497745439869954908711 ~2015
493499139719869982794311 ~2015
4935063619739480508957712 ~2016
4935095965329610575791912 ~2016
493523947439870478948711 ~2015
493528978439870579568711 ~2015
4935544221729613265330312 ~2016
4936048810349360488103112 ~2016
493628154839872563096711 ~2015
493636594199872731883911 ~2015
493638241439872764828711 ~2015
Exponent Prime Factor Dig. Year
4936388109729618328658312 ~2016
493667335439873346708711 ~2015
493681325039873626500711 ~2015
493722527639874450552711 ~2015
4937709138129626254828712 ~2016
4937840372969129765220712 ~2017
493787852519875757050311 ~2015
493803032399876060647911 ~2015
4938673582379018777316912 ~2017
493873325519877466510311 ~2015
493884023519877680470311 ~2015
493906928399878138567911 ~2015
493935246839878704936711 ~2015
493949523719878990474311 ~2015
493988265119879765302311 ~2015
493996586039879931720711 ~2015
494012452919880249058311 ~2015
494020552439880411048711 ~2015
494030748239880614964711 ~2015
494032738319880654766311 ~2015
494042497319880849946311 ~2015
494067005039881340100711 ~2015
494082622199881652443911 ~2015
4941119238129646715428712 ~2016
4941716506739533732053712 ~2016
Exponent Prime Factor Dig. Year
4941756339729650538038312 ~2016
494183120639883662412711 ~2015
4941937642139535501136912 ~2016
494194194119883883882311 ~2015
494194544399883890887911 ~2015
494214238199884284763911 ~2015
494243957399884879147911 ~2015
494252001839885040036711 ~2015
494281381919885627638311 ~2015
494282900639885658012711 ~2015
494328179639886563592711 ~2015
494330353319886607066311 ~2015
4943361461369207060458312 ~2017
494360559239887211184711 ~2015
494377807199887556143911 ~2015
494386128719887722574311 ~2015
4944008254379104132068912 ~2017
4944148256969218075596712 ~2017
494440170119888803402311 ~2015
494453421839889068436711 ~2015
494453891399889077827911 ~2015
494455589519889111790311 ~2015
494523588714045...55647914 2023
494532470999890649419911 ~2015
4945392825729672356954312 ~2016
Exponent Prime Factor Dig. Year
4945450992129672705952712 ~2016
4945457700129672746200712 ~2016
494547860399890957207911 ~2015
4945861238939566889911312 ~2016
494604405839892088116711 ~2015
4946279053729677674322312 ~2016
494660987519893219750311 ~2015
494676039599893520791911 ~2015
494696078519893921570311 ~2015
494748043319894960866311 ~2015
494763277799895265555911 ~2015
494764412519895288250311 ~2015
494775572039895511440711 ~2015
494783722919895674458311 ~2015
494819353199896387063911 ~2015
494830890119896617802311 ~2015
494847704039896954080711 ~2015
494864377199897287543911 ~2015
494917251839898345036711 ~2015
494962666439899253328711 ~2015
494974670399899493407911 ~2015
495007812839900156256711 ~2015
4950195349739601562797712 ~2016
4950290509729701743058312 ~2016
495040657919900813158311 ~2015
Home
4.768.925 digits
e-mail
25-05-04