Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4754003849328524023095912 ~2016
475404983639508099672711 ~2014
475405852199508117043911 ~2014
475422939239508458784711 ~2014
475443734639508874692711 ~2014
4755824915938046599327312 ~2016
475585368599511707371911 ~2014
475629625919512592518311 ~2014
475641974639512839492711 ~2014
475671422639513428452711 ~2014
475675343519513506870311 ~2014
475677984239513559684711 ~2014
475686797519513735950311 ~2014
475736286599514725731911 ~2014
475737732839514754656711 ~2014
4757452885328544717311912 ~2016
475745930639514918612711 ~2014
475797539399515950787911 ~2014
475807534319516150686311 ~2014
475841461199516829223911 ~2014
475846339319516926786311 ~2014
4759266681728555600090312 ~2016
476014831799520296635911 ~2014
476030036399520600727911 ~2014
476037267719520745354311 ~2014
Exponent Prime Factor Dig. Year
476052994319521059886311 ~2014
4760686898938085495191312 ~2016
4761167499776178679995312 ~2017
476135780039522715600711 ~2014
476162044319523240886311 ~2014
476175616199523512323911 ~2014
476181880319523637606311 ~2014
476213433839524268676711 ~2014
476215195319524303906311 ~2014
476219385839524387716711 ~2014
4762373104128574238624712 ~2016
476291279399525825587911 ~2014
4763017468738104139749712 ~2016
476323513799526470275911 ~2014
476325132239526502644711 ~2014
476327806199526556123911 ~2014
476373066839527461336711 ~2014
476390833799527816675911 ~2014
476412626999528252539911 ~2014
4764289927738114319421712 ~2016
4764388149728586328898312 ~2016
476440536239528810724711 ~2014
476442661799528853235911 ~2014
476461210919529224218311 ~2014
4764702247738117617981712 ~2016
Exponent Prime Factor Dig. Year
476475299039529505980711 ~2014
476485380119529707602311 ~2014
476503312439530066248711 ~2014
476623780199532475603911 ~2014
476670741839533414836711 ~2014
476674337639533486752711 ~2014
476685323399533706467911 ~2014
4767191451728603148710312 ~2016
4767304123328603824739912 ~2016
4767633397728605800386312 ~2016
476766815999535336319911 ~2014
4767692844128606157064712 ~2016
476774011799535480235911 ~2014
476805010799536100215911 ~2014
4768311856347683118563112 ~2016
4768413364138147306912912 ~2016
476846330999536926619911 ~2014
476860656839537213136711 ~2014
476881862399537637247911 ~2014
476895844439537916888711 ~2014
476900897639538017952711 ~2014
476938657439538773148711 ~2014
476944975319538899506311 ~2014
476979984239539599684711 ~2014
476982425639539648512711 ~2014
Exponent Prime Factor Dig. Year
477019732799540394655911 ~2014
477043604999540872099911 ~2014
477046315319540926306311 ~2014
477072740399541454807911 ~2014
477079392839541587856711 ~2014
477098058839541961176711 ~2014
4771004869138168038952912 ~2016
4771034208128626205248712 ~2016
4771351530128628109180712 ~2016
477137654399542753087911 ~2014
4771475392376343606276912 ~2017
477149168333659...10911115 2023
477168123599543362471911 ~2014
477192126839543842536711 ~2014
477223585319544471706311 ~2014
477253497839545069956711 ~2014
477255633239545112664711 ~2014
4772691981728636151890312 ~2016
4773528619766829400675912 ~2016
477357463798936...22148914 2023
477357992639547159852711 ~2014
477362891519547257830311 ~2014
477384875519547697510311 ~2014
4774363240128646179440712 ~2016
477454811039549096220711 ~2014
Home
4.768.925 digits
e-mail
25-05-04