Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
473361594719467231894311 ~2014
473387169599467743391911 ~2014
473417710919468354218311 ~2014
473422524599468450491911 ~2014
473436537119468730742311 ~2014
4734737467328408424803912 ~2016
4735123698128410742188712 ~2016
473523834119470476682311 ~2014
473537641199470752823911 ~2014
4735545496128413272976712 ~2016
473560664639471213292711 ~2014
4735764925737886119405712 ~2016
473585627039471712540711 ~2014
4736061004347360610043112 ~2016
473624924039472498480711 ~2014
473630068199472601363911 ~2014
473664028199473280563911 ~2014
473677232519473544650311 ~2014
473689597799473791955911 ~2014
473692004519473840090311 ~2014
473740518594064...49502314 2023
473741871771544...01970314 2023
4737612635328425675811912 ~2016
4738069314175809109025712 ~2017
4738338305328430029831912 ~2016
Exponent Prime Factor Dig. Year
473850673199477013463911 ~2014
473858094239477161884711 ~2014
4739459125947394591259112 ~2016
473951428919479028578311 ~2014
473982711119479654222311 ~2014
473985033599479700671911 ~2014
474065478239481309564711 ~2014
4740729312128444375872712 ~2016
474114568319482291366311 ~2014
474128575439482571508711 ~2014
4741427659328448565955912 ~2016
4741822000137934576000912 ~2016
474218694719484373894311 ~2014
4742235269328453411615912 ~2016
474228819119484576382311 ~2014
4742455932128454735592712 ~2016
474272606519485452130311 ~2014
474285369839485707396711 ~2014
4742993508128457961048712 ~2016
4743191167328459147003912 ~2016
474330696839486613936711 ~2014
4743499710128460998260712 ~2016
474358358519487167170311 ~2014
4743881769728463290618312 ~2016
474392480639487849612711 ~2014
Exponent Prime Factor Dig. Year
4744230653366419229146312 ~2016
474427656599488553131911 ~2014
4744437612128466625672712 ~2016
474453126119489062522311 ~2014
474485744039489714880711 ~2014
474535394399490707887911 ~2014
474544811639490896232711 ~2014
474573893519491477870311 ~2014
474581650919491633018311 ~2014
4745819455728474916734312 ~2016
4745949769728475698618312 ~2016
474617719799492354395911 ~2014
474641167439492823348711 ~2014
474643896839492877936711 ~2014
474651443999493028879911 ~2014
474655690319493113806311 ~2014
4747336224128484017344712 ~2016
474733660919494673218311 ~2014
474738473399494769467911 ~2014
474740571719494811434311 ~2014
474777985319495559706311 ~2014
474781861919495637238311 ~2014
474832538999496650779911 ~2014
474867298199497345963911 ~2014
474867948719497358974311 ~2014
Exponent Prime Factor Dig. Year
4748731283937989850271312 ~2016
474876813839497536276711 ~2014
474880086719497601734311 ~2014
474895076519497901530311 ~2014
4749529411737996235293712 ~2016
4749693934128498163604712 ~2016
474971344919499426898311 ~2014
475041004439500820088711 ~2014
4750902558128505415348712 ~2016
475102441919502048838311 ~2014
475117609319502352186311 ~2014
475134467039502689340711 ~2014
475144249319502884986311 ~2014
475157170199503143403911 ~2014
4751769804776028316875312 ~2017
475204379639504087592711 ~2014
475205029439504100588711 ~2014
4752075301138016602408912 ~2016
475241833799504836675911 ~2014
4752763891328516583347912 ~2016
4753343712128520062272712 ~2016
475334399399506687987911 ~2014
475353622799507072455911 ~2014
475382735519507654710311 ~2014
475391091719507821834311 ~2014
Home
4.768.925 digits
e-mail
25-05-04