Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
62294031133737641867911 ~2009
62298249831245964996711 ~2008
62298336111245966722311 ~2008
62298443991245968879911 ~2008
62299433716229943371111 ~2009
623004238711214076296712 ~2010
62301859431246037188711 ~2008
62302259991246045199911 ~2008
62303103973738186238311 ~2009
62305308111246106162311 ~2008
62306961831246139236711 ~2008
62307768591246155371911 ~2008
62311401711246228034311 ~2008
62313623694985089895311 ~2009
62315755431246315108711 ~2008
62320131711246402634311 ~2008
62320738191246414763911 ~2008
62323264213739395852711 ~2009
62323964938725355090311 ~2010
62327666213739659972711 ~2009
62328604791246572095911 ~2008
62328685911246573718311 ~2008
62334668031246693360711 ~2008
62336854813740211288711 ~2009
62337570591246751411911 ~2008
Exponent Prime Factor Dig. Year
62338713414987097072911 ~2009
623390697124935627884112 ~2011
623398066123689126511912 ~2011
62342015573740520934311 ~2009
62344181031246883620711 ~2008
62349305874987944469711 ~2009
62351999814988159984911 ~2009
62352367191247047343911 ~2008
62353757991247075159911 ~2008
62360769114988861528911 ~2009
62363160133741789607911 ~2009
62363868831247277376711 ~2008
62366080431247321608711 ~2008
62367225196236722519111 ~2009
62368112991247362259911 ~2008
62368428831247368576711 ~2008
62371369431247427388711 ~2008
62372113911247442278311 ~2008
623722251724948890068112 ~2011
62375605791247512115911 ~2008
62376932573742615954311 ~2009
62377349631247546992711 ~2008
623776838919960858844912 ~2010
62378525391247570507911 ~2008
62378728573742723714311 ~2009
Exponent Prime Factor Dig. Year
62379108831247582176711 ~2008
62379422476237942247111 ~2009
62379937911247598758311 ~2008
62381664111247633282311 ~2008
62382249831247644996711 ~2008
62388738474991099077711 ~2009
62393507511247870150311 ~2008
62395007213743700432711 ~2009
623964613749917169096112 ~2011
62396710191247934203911 ~2008
62398019991247960399911 ~2008
62398156014991852480911 ~2009
62403038274992243061711 ~2009
62404237431248084748711 ~2008
62405610231248112204711 ~2008
62406603379985056539311 ~2010
62407989831248159796711 ~2008
62409727191248194543911 ~2008
624106570711233918272712 ~2010
62411574591248231491911 ~2008
62414033511248280670311 ~2008
62416223391248324467911 ~2008
62417753413745065204711 ~2009
62419328214993546256911 ~2009
62421203031248424060711 ~2008
Exponent Prime Factor Dig. Year
624215275911235874966312 ~2010
62421716511248434330311 ~2008
62422614079987618251311 ~2010
62424302031248486040711 ~2008
62424438414993955072911 ~2009
62426504991248530099911 ~2008
62427734173745664050311 ~2009
62429710431248594208711 ~2008
624321003714983704088912 ~2010
62432429031248648580711 ~2008
62439308511248786170311 ~2008
62440685991248813719911 ~2008
62441084991248821699911 ~2008
62441450573746487034311 ~2009
62443490991248869819911 ~2008
62443628694995490295311 ~2009
624439139931221956995112 ~2011
62449577116244957711111 ~2009
62451240439992198468911 ~2010
62452201396245220139111 ~2009
62459243391249184867911 ~2008
62460526911249210538311 ~2008
62463427311249268546311 ~2008
62464396311249287926311 ~2008
62473389831249467796711 ~2008
Home
5.247.179 digits
e-mail
25-12-14