Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
62124484013727469040711 ~2009
62124573711242491474311 ~2008
62124759796212475979111 ~2009
62124894111242497882311 ~2008
62126546991242530939911 ~2008
62127230631242544612711 ~2008
62128467231242569344711 ~2008
62130432714970434616911 ~2009
62132322474970585797711 ~2009
62133027413727981644711 ~2009
62134035973728042158311 ~2009
62143293013728597580711 ~2009
62146849191242936983911 ~2008
62148183831242963676711 ~2008
62151445573729086734311 ~2009
62152246939944359508911 ~2010
621522521314916540511312 ~2010
62152613031243052260711 ~2008
62153555511243071110311 ~2008
62154030591243080611911 ~2008
62155706391243114127911 ~2008
62155735791243114715911 ~2008
62158912396215891239111 ~2009
62160487431243209748711 ~2008
62169232879947077259311 ~2010
Exponent Prime Factor Dig. Year
62169626511243392530311 ~2008
62169950031243399000711 ~2008
62170037391243400747911 ~2008
62170752111243415042311 ~2008
62171304591243426091911 ~2008
62172037494973762999311 ~2009
621732045733573530467912 ~2011
62173548831243470976711 ~2008
62174741631243494832711 ~2008
62174985591243499711911 ~2008
62177060031243541200711 ~2008
62179291996217929199111 ~2009
62180239911243604798311 ~2008
62183046111243660922311 ~2008
621832732913680320123912 ~2010
62183992194974719375311 ~2009
62184460494974756839311 ~2009
62185867191243717343911 ~2008
62186901111243738022311 ~2008
62186977614974958208911 ~2009
62189239791243784795911 ~2008
62190030231243800604711 ~2008
62190131031243802620711 ~2008
62193272391243865447911 ~2008
62193650631243873012711 ~2008
Exponent Prime Factor Dig. Year
62194064991243881299911 ~2008
62196238314975699064911 ~2009
62196248991243924979911 ~2008
62198092431243961848711 ~2008
62202703791244054075911 ~2008
62203885791244077715911 ~2008
62205429591244108591911 ~2008
62208966316220896631111 ~2009
62209956733732597403911 ~2009
62210505711244210114311 ~2008
62211336413732680184711 ~2009
62211398236221139823111 ~2009
622119940716175118458312 ~2010
62215553631244311072711 ~2008
62218343476221834347111 ~2009
622217265124888690604112 ~2011
62224972191244499443911 ~2008
62228212639956514020911 ~2010
622318332184635293165712 ~2012
62233226391244664527911 ~2008
62235653991244713079911 ~2008
62239434773734366086311 ~2009
622394849911203107298312 ~2010
62240433591244808671911 ~2008
62240532796224053279111 ~2009
Exponent Prime Factor Dig. Year
62240930413734455824711 ~2009
62240987391244819747911 ~2008
62242615791244852315911 ~2008
62251424391245028487911 ~2008
62253458511245069170311 ~2008
62255534031245110680711 ~2008
62255706013735342360711 ~2009
62256073311245121466311 ~2008
62256931911245138638311 ~2008
62257439213735446352711 ~2009
62258980431245179608711 ~2008
62260900516226090051111 ~2009
62262820036226282003111 ~2009
62264638519962342161711 ~2010
62272580391245451607911 ~2008
62273093773736385626311 ~2009
62274804594981984367311 ~2009
62276306391245526127911 ~2008
62278041711245560834311 ~2008
62278376991245567539911 ~2008
62283101631245662032711 ~2008
62285406111245708122311 ~2008
62289139133737348347911 ~2009
62289505311245790106311 ~2008
62290589031245811780711 ~2008
Home
5.247.179 digits
e-mail
25-12-14