Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
160531869233210637384711 ~2011
1605382420112843059360912 ~2012
160560893033211217860711 ~2011
160564555379633873322311 ~2012
160568743139634124587911 ~2012
1605719029722480066415912 ~2013
160572835313211456706311 ~2011
160573024913211460498311 ~2011
160576639433211532788711 ~2011
160581033713211620674311 ~2011
160593096113211861922311 ~2011
160596756233211935124711 ~2011
160604108513212082170311 ~2011
160605364913212107298311 ~2011
160607726393212154527911 ~2011
160608626513212172530311 ~2011
160611298913212225978311 ~2011
160611744713212234894311 ~2011
160631274713212625494311 ~2011
160633938833212678776711 ~2011
160635076793212701535911 ~2011
160649449433212988988711 ~2011
160654023419639241404711 ~2012
160657680833213153616711 ~2011
1606625690912853005527312 ~2012
Exponent Prime Factor Dig. Year
1606734104912853872839312 ~2012
160695487793213909755911 ~2011
1606956504728925217084712 ~2013
160705516433214110328711 ~2011
160721075033214421500711 ~2011
160727205233214544104711 ~2011
160728614819643716888711 ~2012
160734201713214684034311 ~2011
1607343775325717500404912 ~2013
1607364459116073644591112 ~2012
1607424214712859393717712 ~2012
160750264913215005298311 ~2011
160750970633215019412711 ~2011
1607573890112860591120912 ~2012
1607644991967521089659912 ~2014
160766123993215322479911 ~2011
1607743897712861951181712 ~2012
160784664833215693296711 ~2011
1607853178325725650852912 ~2013
160785407339647124439911 ~2012
1607928540716079285407112 ~2012
160811235113216224702311 ~2011
160816084579648965074311 ~2012
160816147793216322955911 ~2011
1608232201738597572840912 ~2013
Exponent Prime Factor Dig. Year
160823477633216469552711 ~2011
160827610913216552218311 ~2011
160827746513216554930311 ~2011
1608322049348249661479112 ~2014
160833030113216660602311 ~2011
160835780393216715607911 ~2011
160842840539650570431911 ~2012
160846798793216935975911 ~2011
160851645593217032911911 ~2011
160853489633217069792711 ~2011
160863985433217279708711 ~2011
1608652324712869218597712 ~2012
160870281593217405631911 ~2011
1608734653325739754452912 ~2013
160883564633217671292711 ~2011
160891843793217836875911 ~2011
160893453833217869076711 ~2011
160906575593218131511911 ~2011
160908953633218179072711 ~2011
160910336633218206732711 ~2011
160911095393218221907911 ~2011
160939830979656389858311 ~2012
1609482430338627578327312 ~2013
1609497760938627946261712 ~2013
160959222593219184451911 ~2011
Exponent Prime Factor Dig. Year
160961397713219227954311 ~2011
160970006513219400130311 ~2011
160976734979658604098311 ~2012
1609877192922538280700712 ~2013
160996957619659817456711 ~2012
161002466993220049339911 ~2011
1610063974728981151544712 ~2013
161009096513220181930311 ~2011
1610116612112880932896912 ~2012
1610142350912881138807312 ~2012
161018909993220378199911 ~2011
161035413833220708276711 ~2011
161041553513220831070311 ~2011
161044072193220881443911 ~2011
161049797393220995947911 ~2011
1610503389128989061003912 ~2013
161067676793221353535911 ~2011
161069099393221381987911 ~2011
161069881193221397623911 ~2011
1610718713912885749711312 ~2012
161083965113221679302311 ~2011
161087543033221750860711 ~2011
161097901979665874118311 ~2012
161122422619667345356711 ~2012
161135994233222719884711 ~2011
Home
4.768.925 digits
e-mail
25-05-04