Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
179673481313593469626311 ~2011
179680768313593615366311 ~2011
1796916889114375335112912 ~2013
1796928409710781570458312 ~2012
179697205913593944118311 ~2011
1797070308110782421848712 ~2012
179722913993594458279911 ~2011
179727412433594548248711 ~2011
179749457993594989159911 ~2011
179750040593595000811911 ~2011
179750593313595011866311 ~2011
179755414313595108286311 ~2011
1797671779714381374237712 ~2013
179769680633595393612711 ~2011
1797713193710786279162312 ~2012
179773743233595474864711 ~2011
1797828769710786972618312 ~2012
1797921429117979214291112 ~2013
179792543393595850867911 ~2011
1798023965310788143791912 ~2012
179803568993596071379911 ~2011
1798105510114384844080912 ~2013
179816537993596330759911 ~2011
1798193551114385548408912 ~2013
179823321833596466436711 ~2011
Exponent Prime Factor Dig. Year
179840511593596810231911 ~2011
1798419028114387352224912 ~2013
179847116033596942320711 ~2011
179849056193596981123911 ~2011
1798505236343164125671312 ~2014
1798580768914388646151312 ~2013
179859414833597188296711 ~2011
179867203313597344066311 ~2011
1798837748346769781455912 ~2014
1798912951114391303608912 ~2013
179896610993597932219911 ~2011
179902199633598043992711 ~2011
1799125047710794750286312 ~2012
1799254528714394036229712 ~2013
179965768913599315378311 ~2011
179971590833599431816711 ~2011
179979465113599589302311 ~2011
179979495833599589916711 ~2011
179984129633599682592711 ~2011
179993167193599863343911 ~2011
179999782313599995646311 ~2011
179999957633599999152711 ~2011
180000022433600000448711 ~2011
180002058593600041171911 ~2011
180007308833600146176711 ~2011
Exponent Prime Factor Dig. Year
180029562713600591254311 ~2011
1800407223743209773368912 ~2014
1800472755118004727551112 ~2013
180051605993601032119911 ~2011
180054368033601087360711 ~2011
1800703164110804218984712 ~2012
180074080193601481603911 ~2011
180076772513601535450311 ~2011
180097271393601945427911 ~2011
180129057593602581151911 ~2011
1801324083728821185339312 ~2013
180135036593602700731911 ~2011
180144891833602897836711 ~2011
180170367833603407356711 ~2011
180172020233603440404711 ~2011
1801752536914414020295312 ~2013
1801798099975675520195912 ~2014
180187203113603744062311 ~2011
180193016033603860320711 ~2011
1801973239114415785912912 ~2013
180204646913604092938311 ~2011
1802110747310812664483912 ~2012
1802185321918021853219112 ~2013
180234213713604684274311 ~2011
1802475639710814853838312 ~2012
Exponent Prime Factor Dig. Year
1802486285310814917711912 ~2012
180253314593605066291911 ~2011
180264184793605283695911 ~2011
180269709713605394194311 ~2011
180270623513605412470311 ~2011
180286393193605727863911 ~2011
180290384033605807680711 ~2011
180290865113605817302311 ~2011
1802988093172119523724112 ~2014
1803063261710818379570312 ~2012
180307223993606144479911 ~2011
1803100665710818603994312 ~2012
1803178879310819073275912 ~2012
1803289212718032892127112 ~2013
180343929233606878584711 ~2011
180346944593606938891911 ~2011
180376778513607535570311 ~2011
1803811741710822870450312 ~2012
1803821427710822928566312 ~2012
180386022593607720451911 ~2011
1803986400110823918400712 ~2012
180399116633607982332711 ~2011
1804078492110824470952712 ~2012
1804143882728866302123312 ~2013
180417037313608340746311 ~2011
Home
4.768.925 digits
e-mail
25-05-04