Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2041612221732665795547312 ~2014
204172323234083446464711 ~2012
204180511914083610238311 ~2012
204194791914083895838311 ~2012
204199600194083992003911 ~2012
204201676434084033528711 ~2012
2042039065116336312520912 ~2013
2042244219712253465318312 ~2013
204227148594084542971911 ~2012
2042501917712255011506312 ~2013
2042505125312255030751912 ~2013
204261206994085224139911 ~2012
204272855514085457110311 ~2012
204293403114085868062311 ~2012
204308465034086169300711 ~2012
204311071434086221428711 ~2012
204313935593481...62453714 2023
204317620314086352406311 ~2012
2043260117916346080943312 ~2013
2043442000716347536005712 ~2013
204363509394087270187911 ~2012
2043771663120437716631112 ~2013
2044177327920441773279112 ~2013
2044190674332707050788912 ~2014
204441161034088823220711 ~2012
Exponent Prime Factor Dig. Year
2044450059712266700358312 ~2013
204449325234088986504711 ~2012
204452754234089055084711 ~2012
204453134634089062692711 ~2012
204463220034089264400711 ~2012
2044702699712268216198312 ~2013
2044875538949077012933712 ~2014
204490852314089817046311 ~2012
204492477114089849542311 ~2012
2045046554916360372439312 ~2013
204510442194090208843911 ~2012
204511263594090225271911 ~2012
204517062594090341251911 ~2012
204526637994090532759911 ~2012
2045266738320452667383112 ~2013
204529985394090599707911 ~2012
2045317411712271904470312 ~2013
2045367031312272202187912 ~2013
204536907594090738151911 ~2012
2045381935712272291614312 ~2013
2045543185312273259111912 ~2013
204563264634091265292711 ~2012
204578164794091563295911 ~2012
204579556314091591126311 ~2012
204584281434091685628711 ~2012
Exponent Prime Factor Dig. Year
204622028634092440572711 ~2012
2046240592112277443552712 ~2013
204626059794092521195911 ~2012
2046389378916371115031312 ~2013
204641900034092838000711 ~2012
2046450307920464503079112 ~2013
2046492172320464921723112 ~2013
204651178314093023566311 ~2012
2046522520320465225203112 ~2013
204661193394093223867911 ~2012
204667514994093350299911 ~2012
204686773194093735463911 ~2012
204687344634093746892711 ~2012
204700308594094006171911 ~2012
204702384714094047694311 ~2012
204708310914094166218311 ~2012
204728316234094566324711 ~2012
204729769434094595388711 ~2012
204768323394095366467911 ~2012
2047694533712286167202312 ~2013
2047726087312286356523912 ~2013
204779194314095583886311 ~2012
2048056687716384453501712 ~2013
2048100007712288600046312 ~2013
204811460871083...50805715 2023
Exponent Prime Factor Dig. Year
204824551314096491026311 ~2012
2048445715949162697181712 ~2014
204851783034097035660711 ~2012
2048525140112291150840712 ~2013
2048647723716389181789712 ~2013
204876599034097531980711 ~2012
204882126834097642536711 ~2012
204885333714097706674311 ~2012
2048905410112293432460712 ~2013
2048927157732782834523312 ~2014
204911588394098231767911 ~2012
204925516333836...65697714 2023
2049303515312295821091912 ~2013
204931121034098622420711 ~2012
204939699594098793991911 ~2012
204949751034098995020711 ~2012
204950409714099008194311 ~2012
204950987514099019750311 ~2012
2049817801716398542413712 ~2013
204989036994099780739911 ~2012
204989154714099783094311 ~2012
204997939434099958788711 ~2012
205001203794100024075911 ~2012
205009116114100182322311 ~2012
2050094691136901704439912 ~2014
Home
4.724.182 digits
e-mail
25-04-13