Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
164767907633295358152711 ~2011
164775170513295503410311 ~2011
164781014579886860874311 ~2012
164787018019887221080711 ~2012
164797865393295957307911 ~2011
164798743313295974866311 ~2011
164801776913296035538311 ~2011
1648154744923074166428712 ~2013
164819625593296392511911 ~2011
164832098393296641967911 ~2011
164836199633296723992711 ~2011
164849415593296988311911 ~2011
164850629393297012587911 ~2011
164850902633297018052711 ~2011
164859440097698...52203114 2025
164873942513297478850311 ~2011
164874711113297494222311 ~2011
1648860004713190880037712 ~2012
164896461713297929234311 ~2011
164915221219894913272711 ~2012
164916015833298320316711 ~2011
164916643793298332875911 ~2011
164920310633298406212711 ~2011
164923299233298465984711 ~2011
164936202113298724042311 ~2011
Exponent Prime Factor Dig. Year
1649415089913195320719312 ~2012
164942379113298847582311 ~2011
1649497630713195981045712 ~2012
164950951433299019028711 ~2011
164969872313299397446311 ~2011
1649717728365988709132112 ~2014
164972416793299448335911 ~2011
164974508579898470514311 ~2012
164980038593299600771911 ~2011
164980107019898806420711 ~2012
164988387113299767742311 ~2011
164988438113299768762311 ~2011
1650006747726400107963312 ~2013
165008796833300175936711 ~2011
165013047171316...16416714 2023
165014988833300299776711 ~2011
165021601313300432026311 ~2011
165027994313300559886311 ~2011
165030516113300610322311 ~2011
165031143113300622862311 ~2011
1650402517113203220136912 ~2012
165049315193300986303911 ~2011
165060795113301215902311 ~2011
165061310393301226207911 ~2011
165062411779903744706311 ~2012
Exponent Prime Factor Dig. Year
165083515019905010900711 ~2012
165084986633301699732711 ~2011
165087934433301758688711 ~2011
165088367339905302039911 ~2012
165092418233301848364711 ~2011
165096137513301922750311 ~2011
165096938993301938779911 ~2011
165100176739906010603911 ~2012
165103112633302062252711 ~2011
1651055623929719001230312 ~2013
165106151819906369108711 ~2012
165107681993302153639911 ~2011
165109405313302188106311 ~2011
165116201993302324039911 ~2011
165119915393302398307911 ~2011
165127767713302555354311 ~2011
165137030993302740619911 ~2011
165138688793302773775911 ~2011
165139556779908373406311 ~2012
165141055193302821103911 ~2011
165143843033302876860711 ~2011
165147161033302943220711 ~2011
165150125993303002519911 ~2011
1651523280716515232807112 ~2013
165155096633303101932711 ~2011
Exponent Prime Factor Dig. Year
165163700993303274019911 ~2011
165167993633303359872711 ~2011
165174909113303498182311 ~2011
1651760521916517605219112 ~2013
165180441113303608822311 ~2011
165183405233303668104711 ~2011
165185006419911100384711 ~2012
165186943433303738868711 ~2011
165192470579911548234311 ~2012
165193834379911630062311 ~2012
165204624113304092482311 ~2011
165217937513304358750311 ~2011
165218510513304370210311 ~2011
165219364433304387288711 ~2011
1652249050713217992405712 ~2012
165225803513304516070311 ~2011
1652306036913218448295312 ~2012
165243795833304875916711 ~2011
1652491893776014627110312 ~2014
165254129993305082599911 ~2011
165259431113305188622311 ~2011
165267743393305354867911 ~2011
165271190513305423810311 ~2011
165272915033305458300711 ~2011
165302105339918126319911 ~2012
Home
4.768.925 digits
e-mail
25-05-04