Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1299313450710394507605712 ~2011
129934786977796087218311 ~2011
1299445513912994455139112 ~2012
129945632032598912640711 ~2010
129950316832599006336711 ~2010
129957905512599158110311 ~2010
129958246432599164928711 ~2010
129960360832599207216711 ~2010
129976710832599534216711 ~2010
1299850732320797611716912 ~2012
129986681577799200894311 ~2011
129988047712599760954311 ~2010
129999440632599988812711 ~2010
130002191032600043820711 ~2010
130006822312600136446311 ~2010
130010569792600211395911 ~2010
130014300832600286016711 ~2010
130014309712600286194311 ~2010
130023993592600479871911 ~2010
130035225832600704516711 ~2010
130042420817802545248711 ~2011
130044169792600883395911 ~2010
130049365137802961907911 ~2011
130054675432601093508711 ~2010
130061922112601238442311 ~2010
Exponent Prime Factor Dig. Year
130064763832601295276711 ~2010
1300657474352026298972112 ~2013
130066564792601331295911 ~2010
1300713510713007135107112 ~2012
130071911392601438227911 ~2010
130073275792601465515911 ~2010
1300776143923413970590312 ~2012
1300846756710406774053712 ~2011
130086234712601724694311 ~2010
130091182312601823646311 ~2010
130094370617805662236711 ~2011
130098945592601978911911 ~2010
1301015863110408126904912 ~2011
130103384032602067680711 ~2010
130109472592602189451911 ~2010
130109779432602195588711 ~2010
130110522832602210456711 ~2010
130113041577806782494311 ~2011
130128184377807691062311 ~2011
130131390592602627811911 ~2010
1301395454910411163639312 ~2011
130141230712602824614311 ~2010
130148785312602975706311 ~2010
1301529566970282596612712 ~2014
130155225017809313500711 ~2011
Exponent Prime Factor Dig. Year
1301564990910412519927312 ~2011
130161589792603231795911 ~2010
130165157032603303140711 ~2010
130173110632603462212711 ~2010
130178252632603565052711 ~2010
130181829232603636584711 ~2010
130187010377811220622311 ~2011
1301924258931246182213712 ~2013
130202430777812145846311 ~2011
130224030777813441846311 ~2011
130225390912604507818311 ~2010
130237084192604741683911 ~2010
130238689737814321383911 ~2011
130240856032604817120711 ~2010
130241856592604837131911 ~2010
130242676312604853526311 ~2010
1302443501923443983034312 ~2012
1302687235110421497880912 ~2011
130272008992605440179911 ~2010
1302728299913027282999112 ~2012
130280996992605619939911 ~2010
130281535432605630708711 ~2010
130294095592605881911911 ~2010
130309869712606197394311 ~2010
130310326432606206528711 ~2010
Exponent Prime Factor Dig. Year
130321301512606426030311 ~2010
1303270030110426160240912 ~2011
130328010131749...95944714 2023
130350313432607006268711 ~2010
1303527637710428221101712 ~2011
130354307632607086152711 ~2010
130355647192607112943911 ~2010
130359629632607192592711 ~2010
130363512712607270254311 ~2010
130375160992607503219911 ~2010
1303807471123468534479912 ~2012
130384037512607680750311 ~2010
1303847567318253865942312 ~2012
130387301577823238094311 ~2011
130390004512607800090311 ~2010
130394988832607899776711 ~2010
130404506392608090127911 ~2010
130407807232608156144711 ~2010
130410004912608200098311 ~2010
1304106835710432854685712 ~2011
1304143232910433145863312 ~2011
130414452232608289044711 ~2010
1304241390713042413907112 ~2012
130426848592608536971911 ~2010
130428207112608564142311 ~2010
Home
4.768.925 digits
e-mail
25-05-04