Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
187103069633742061392711 ~2011
187105126793742102535911 ~2011
1871245334914969962679312 ~2013
187125413393742508267911 ~2011
1871255515329940088244912 ~2013
187129534193742590683911 ~2011
1871432701159885846435312 ~2014
187148291033742965820711 ~2011
1871521999711229131998312 ~2012
187155301313743106026311 ~2011
1871640999711229845998312 ~2012
187165675313743313506311 ~2011
187167699713743353994311 ~2011
187185039833743700796711 ~2011
1871865598111231193588712 ~2012
1871885125341181472756712 ~2014
187189770713743795414311 ~2011
1871970993711231825962312 ~2012
1872022363311232134179912 ~2012
187210035233744200704711 ~2011
187211079593744221591911 ~2011
187225836833744516736711 ~2011
1872291653914978333231312 ~2013
187241180513744823610311 ~2011
187248984593744979691911 ~2011
Exponent Prime Factor Dig. Year
1872558118329960929892912 ~2013
187261177793745223555911 ~2011
187268642033745372840711 ~2011
187276897913745537958311 ~2011
187281849113745636982311 ~2011
187286997891663...41263314 2023
187288663193745773263911 ~2011
187299306833745986136711 ~2011
1873034517711238207106312 ~2012
1873046172129968738753712 ~2013
1873099003711238594022312 ~2012
187313263193746265263911 ~2011
187319901713746398034311 ~2011
187321148993746422979911 ~2011
187325182193746503643911 ~2011
187329133193746582663911 ~2011
187329821993746596439911 ~2011
1873303039114986424312912 ~2013
1873323007714986584061712 ~2013
187347751793746955035911 ~2011
187351322633747026452711 ~2011
1873555372329976885956912 ~2013
1873788655341223350416712 ~2014
187383022793747660455911 ~2011
1873854655311243127931912 ~2012
Exponent Prime Factor Dig. Year
187385500793747710015911 ~2011
187395410633747908212711 ~2011
187395520433747910408711 ~2011
1874124925714992999405712 ~2013
1874126037133734268667912 ~2014
187414592633748291852711 ~2011
187424793233748495864711 ~2011
187426831193748536623911 ~2011
1874415371914995322975312 ~2013
187441874993748837499911 ~2011
1874436792129990988673712 ~2013
187444629233748892584711 ~2011
1874641170111247847020712 ~2012
1874724535311248347211912 ~2012
187489958993749799179911 ~2011
187495189793749903795911 ~2011
187497214433749944288711 ~2011
187501500113750030002311 ~2011
1875083194715000665557712 ~2013
187526397713750527954311 ~2011
187535955593750719111911 ~2011
1875474515915003796127312 ~2013
187553811713751076234311 ~2011
1875556983130008911729712 ~2013
1875589735330009435764912 ~2013
Exponent Prime Factor Dig. Year
187565321633751306432711 ~2011
187570521833751410436711 ~2011
187572051713751441034311 ~2011
187574519033751490380711 ~2011
187575839513751516790311 ~2011
187576443713751528874311 ~2011
1875776855915006214847312 ~2013
1875796956111254781736712 ~2012
1875847970926261871592712 ~2013
187601000393752020007911 ~2011
1876111930345026686327312 ~2014
187615232393752304647911 ~2011
187628935433752578708711 ~2011
1876312621115010500968912 ~2013
1876388898111258333388712 ~2012
187647516113752950322311 ~2011
187647977633752959552711 ~2011
187650577193753011543911 ~2011
187656779393753135587911 ~2011
187671788033753435760711 ~2011
187671947033753438940711 ~2011
1876801174945043228197712 ~2014
187684101233753682024711 ~2011
187684117433753682348711 ~2011
187703194793754063895911 ~2011
Home
4.768.925 digits
e-mail
25-05-04