Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
101703536816102212208711 ~2010
101705781016102346860711 ~2010
101708039992034160799911 ~2009
101708135392034162707911 ~2009
101708447632034168952711 ~2009
101714322118137145768911 ~2011
1017149005754926046307912 ~2013
101720711578137656925711 ~2011
101731741312034634826311 ~2009
101737668592034753371911 ~2009
101737882912034757658311 ~2009
101738999032034779980711 ~2009
101739277192034785543911 ~2009
101739816592034796331911 ~2009
101748378592034967571911 ~2009
101750473618140037888911 ~2011
101753162512035063250311 ~2009
101756188192035123763911 ~2009
101756208832035124176711 ~2009
101760817912035216358311 ~2009
101764249432035284988711 ~2009
101766004912035320098311 ~2009
101768206912035364138311 ~2009
101769922912035398458311 ~2009
101778230392035564607911 ~2009
Exponent Prime Factor Dig. Year
101780488792035609775911 ~2009
1017928762324430290295312 ~2012
1017954482938682270350312 ~2012
101797294936107837695911 ~2010
101805894112036117882311 ~2009
101808442312036168846311 ~2009
101822542976109352578311 ~2010
101827419112036548382311 ~2009
101829801832036596036711 ~2009
101834280416110056824711 ~2010
101840492032036809840711 ~2009
101843996632036879932711 ~2009
101846251336110775079911 ~2010
101849496232036989924711 ~2009
101850472978148037837711 ~2011
101852484832037049696711 ~2009
101852903518148232280911 ~2011
101853061792037061235911 ~2009
101853587512037071750311 ~2009
101857861792037157235911 ~2009
1018579323116297269169712 ~2011
101859197392037183947911 ~2009
101861410378148912829711 ~2011
1018667262710186672627112 ~2011
1018705512116299288193712 ~2011
Exponent Prime Factor Dig. Year
101872998832037459976711 ~2009
101875283392037505667911 ~2009
101876167792037523355911 ~2009
101880386032037607720711 ~2009
101885463832037709276711 ~2009
101885928712037718574311 ~2009
101888130832037762616711 ~2009
101895021718151601736911 ~2011
101902140376114128422311 ~2010
101902217992038044359911 ~2009
101903297392038065947911 ~2009
1019036893126494959220712 ~2012
101906882512038137650311 ~2009
101917364032038347280711 ~2009
101921005432038420108711 ~2009
101931343792038626875911 ~2009
101936493778154919501711 ~2011
101938014592038760291911 ~2009
1019400611332620819561712 ~2012
101945817592038916351911 ~2009
101946071032038921420711 ~2009
101946547192038930943911 ~2009
101948275432038965508711 ~2009
101954717536117283051911 ~2010
101957758792039155175911 ~2009
Exponent Prime Factor Dig. Year
101958232432039164648711 ~2009
101958659512039173190311 ~2009
101964002392039280047911 ~2009
101966823112039336462311 ~2009
101969266432039385328711 ~2009
101969673232039393464711 ~2009
101970723776118243426311 ~2010
101975771992039515439911 ~2009
101986168192039723363911 ~2009
101991224216119473452711 ~2010
101991979792039839595911 ~2009
102000062632040001252711 ~2009
1020075204710200752047112 ~2011
102008927392040178547911 ~2009
1020114301340804572052112 ~2012
102021075112040421502311 ~2009
102024699112040493982311 ~2009
102030345712040606914311 ~2009
102031350536121881031911 ~2010
102031962592040639251911 ~2009
1020331012316325296196912 ~2011
102037728112040754562311 ~2009
102039794816122387688711 ~2010
102043324192040866483911 ~2009
102047851912040957038311 ~2009
Home
4.768.925 digits
e-mail
25-05-04