Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
30073023592405841887311 ~2007
30073607572405888605711 ~2007
3007442591601488518310 ~2005
3007486271601497254310 ~2005
3007514039601502807910 ~2005
30075159371804509562311 ~2006
3007518719601503743910 ~2005
3007721543601544308710 ~2005
3007857323601571464710 ~2005
30079545412406363632911 ~2007
3008087051601617410310 ~2005
3008126063601625212710 ~2005
3008252231601650446310 ~2005
3008572139601714427910 ~2005
30085920292406873623311 ~2007
3008652323601730464710 ~2005
3008714399601742879910 ~2005
3008726711601745342310 ~2005
30087463971805247838311 ~2006
3008748191601749638310 ~2005
3008778323601755664710 ~2005
3008812343601762468710 ~2005
30088858513008885851111 ~2007
3008893091601778618310 ~2005
30089455011805367300711 ~2006
Exponent Prime Factor Digits Year
30090318977221676552911 ~2008
3009098699601819739910 ~2005
3009105311601821062310 ~2005
3009153431601830686310 ~2005
3009163823601832764710 ~2005
3009210551601842110310 ~2005
3009225623601845124710 ~2005
3009260063601852012710 ~2005
30092822812407425824911 ~2007
3009298931601859786310 ~2005
3009383339601876667910 ~2005
3009384023601876804710 ~2005
3009532079601906415910 ~2005
3009719243601943848710 ~2005
3009719651601943930310 ~2005
3009741503601948300710 ~2005
30098820592407905647311 ~2007
3009915323601983064710 ~2005
3010111151602022230310 ~2005
30102116819632677379311 ~2008
3010212371602042474310 ~2005
3010370411602074082310 ~2005
3010407479602081495910 ~2005
30104962275418893208711 ~2007
30106483792408518703311 ~2007
Exponent Prime Factor Digits Year
3010911311602182262310 ~2005
3010942019602188403910 ~2005
30109784174817565467311 ~2007
3011091179602218235910 ~2005
3011231603602246320710 ~2005
30112332014817973121711 ~2007
30113772531806826351911 ~2006
30113871292409109703311 ~2007
3011406971602281394310 ~2005
3011454263602290852710 ~2005
3011476511602295302310 ~2005
3011692259602338451910 ~2005
30117107212409368576911 ~2007
30118344534216568234311 ~2007
3011935739602387147910 ~2005
30119608211807176492711 ~2006
30120245574216834379911 ~2007
3012060563602412112710 ~2005
30122834331807370059911 ~2006
3012395051602479010310 ~2005
3012444983602488996710 ~2005
3012495383602499076710 ~2005
30125378595422568146311 ~2007
3012539063602507812710 ~2005
30126134531807568071911 ~2006
Exponent Prime Factor Digits Year
3012702131602540426310 ~2005
3012719471602543894310 ~2005
3012724031602544806310 ~2005
3012938531602587706310 ~2005
3012958199602591639910 ~2005
30130836134820933780911 ~2007
3013149383602629876710 ~2005
3013159931602631986310 ~2005
3013215071602643014310 ~2005
3013265483602653096710 ~2005
30132815531807968931911 ~2006
3013298819602659763910 ~2005
30133702011808022120711 ~2006
3013407851602681570310 ~2005
3013446263602689252710 ~2005
30136397531808183851911 ~2006
30137670171808260210311 ~2006
3013943123602788624710 ~2005
3013983551602796710310 ~2005
3014034503602806900710 ~2005
3014085671602817134310 ~2005
3014219531602843906310 ~2005
30142726211808563572711 ~2006
3014327999602865599910 ~2005
30143519812411481584911 ~2007
Home
5.247.179 digits
e-mail
25-12-14