Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
98236389111964727782311 ~2009
98237214375894232862311 ~2010
982400729370732852509712 ~2013
98242310935894538655911 ~2010
98247194511964943890311 ~2009
98251714311965034286311 ~2009
98252931831965058636711 ~2009
98253357015895201420711 ~2010
982580378913756125304712 ~2011
982581397933407767528712 ~2012
98258192991965163859911 ~2009
98266293831965325876711 ~2009
98278323831965566476711 ~2009
98278662711965573254311 ~2009
98279752311965595046311 ~2009
98280265311965605306311 ~2009
982805296723587327120912 ~2012
98288505415897310324711 ~2010
982888886913760444416712 ~2011
98291314639829131463111 ~2011
98291527191965830543911 ~2009
98292693111965853862311 ~2009
98293189311965863786311 ~2009
98295154311965903086311 ~2009
983002256913762031596712 ~2011
Exponent Prime Factor Dig. Year
98306870631966137412711 ~2009
98311432375898685942311 ~2010
98312758735898765523911 ~2010
98318187231966363744711 ~2009
983273768341297498268712 ~2012
98328092575899685554311 ~2010
98328875631966577512711 ~2009
98330380017866430400911 ~2011
98345102991966902059911 ~2009
98346957477867756597711 ~2011
98347792911966955858311 ~2009
98349461511966989230311 ~2009
98349625911966992518311 ~2009
98349710997867976879311 ~2011
98351747991967034959911 ~2009
98353327615901199656711 ~2010
98355782991967115659911 ~2009
98361283911967225678311 ~2009
98364615711967292314311 ~2009
98368940511967378810311 ~2009
98371723431967434468711 ~2009
98373055191967461103911 ~2009
98379223791967584475911 ~2009
98380168191967603363911 ~2009
98383564911967671298311 ~2009
Exponent Prime Factor Dig. Year
98390374311967807486311 ~2009
98390950815903457048711 ~2010
98391870735903512243911 ~2010
98392145719839214571111 ~2011
98392312431967846248711 ~2009
98393480631967869612711 ~2009
98395246311967904926311 ~2009
98395785591967915711911 ~2009
98397274791967945495911 ~2009
98406462231968129244711 ~2009
98410061575904603694311 ~2010
98410082391968201647911 ~2009
98411202535904672151911 ~2010
98415004911968300098311 ~2009
98415914775904954886311 ~2010
984204616333462956954312 ~2012
984278805115748460881712 ~2011
98437400511968748010311 ~2009
98438301591968766031911 ~2009
98446113231968922264711 ~2009
98452232991969044659911 ~2009
98454027111969080542311 ~2009
98461535031969230700711 ~2009
98465310111969306202311 ~2009
98467599711969351994311 ~2009
Exponent Prime Factor Dig. Year
98470160277877612821711 ~2011
98470472335908228339911 ~2010
98471096415908265784711 ~2010
98477537535908652251911 ~2010
98478165231969563304711 ~2009
98484843231969696864711 ~2009
98485497591969709951911 ~2009
98486454831969729096711 ~2009
98488465197879077215311 ~2011
98490536479849053647111 ~2011
98495533911969910678311 ~2009
98497952391969959047911 ~2009
98499204711969984094311 ~2009
984999836913789997716712 ~2011
98501972511970039450311 ~2009
98505493911970109878311 ~2009
98511804111970236082311 ~2009
98516021991970320439911 ~2009
98518521415911111284711 ~2010
98520047697881603815311 ~2011
98522366575911341994311 ~2010
98525106375911506382311 ~2010
98528958231970579164711 ~2009
98529266511970585330311 ~2009
98529931311970598626311 ~2009
Home
4.768.925 digits
e-mail
25-05-04