Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
979406095713711685339912 ~2011
979411247313711757462312 ~2011
97943376015876602560711 ~2010
97946823775876809426311 ~2010
97948949511958978990311 ~2009
97951797591959035951911 ~2009
97951963815877117828711 ~2010
97953363711959067274311 ~2009
97957707231959154144711 ~2009
97959678735877580723911 ~2010
97961084631959221692711 ~2009
97961516991959230339911 ~2009
979626169713714766375912 ~2011
97964787591959295751911 ~2009
97966222575877973354311 ~2010
97966541511959330830311 ~2009
97969692231959393844711 ~2009
97982585391959651707911 ~2009
97985066031959701320711 ~2009
97988311311959766226311 ~2009
97990370511959807410311 ~2009
97993245111959864902311 ~2009
97998809031959976180711 ~2009
98000141535880008491911 ~2010
98001350991960027019911 ~2009
Exponent Prime Factor Dig. Year
98004746991960094939911 ~2009
98006569911960131398311 ~2009
98006612391960132247911 ~2009
98011893297840951463311 ~2011
98014012311960280246311 ~2009
98015296311960305926311 ~2009
98023810791960476215911 ~2009
98024337831960486756711 ~2009
98024628231960492564711 ~2009
98026186497842094919311 ~2011
98030987511960619750311 ~2009
98035564911960711298311 ~2009
98040051711960801034311 ~2009
98040251511960805030311 ~2009
98041968231960839364711 ~2009
98053965711961079314311 ~2009
98055722991961114459911 ~2009
98058841911961176838311 ~2009
98064030591961280611911 ~2009
98068263111961365262311 ~2009
98069796319806979631111 ~2011
98070643917845651512911 ~2011
98070739311961414786311 ~2009
98071588431961431768711 ~2009
98075296015884517760711 ~2010
Exponent Prime Factor Dig. Year
98075819991961516399911 ~2009
98079112797846329023311 ~2011
980810748115692971969712 ~2011
98082647775884958866311 ~2010
98085276231961705524711 ~2009
98086488231961729764711 ~2009
98097417831961948356711 ~2009
98101102311962022046311 ~2009
98103888535886233311911 ~2010
98109406191962188123911 ~2009
98116069911962321398311 ~2009
98123041431962460828711 ~2009
98125499631962509992711 ~2009
98133413991962668279911 ~2009
98138531031962770620711 ~2009
98142067911962841358311 ~2009
98142466191962849323911 ~2009
98143007391962860147911 ~2009
98143699311962873986311 ~2009
98144006215888640372711 ~2010
98149533591962990671911 ~2009
98154814191963096283911 ~2009
98157559911963151198311 ~2009
981604747321595304440712 ~2012
98160680775889640846311 ~2010
Exponent Prime Factor Dig. Year
98160949191963218983911 ~2009
981616717321595567780712 ~2012
98162559831963251196711 ~2009
98163408111963268162311 ~2009
98164551417853164112911 ~2011
98173451217853876096911 ~2011
98173976991963479539911 ~2009
98174928711963498574311 ~2009
98183927391963678547911 ~2009
98184746631963694932711 ~2009
98190281391963805627911 ~2009
98201813175892108790311 ~2010
98208097311964161946311 ~2009
98211690231964233804711 ~2009
98212035231964240704711 ~2009
98213172231964263444711 ~2009
98215206711964304134311 ~2009
98216854311964337086311 ~2009
98218200591964364011911 ~2009
98222622535893357351911 ~2010
98225685415893541124711 ~2010
98226616791964532335911 ~2009
98229191031964583820711 ~2009
98229685911964593718311 ~2009
98235762111964715242311 ~2009
Home
4.768.925 digits
e-mail
25-05-04