Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
98537324031970746480711 ~2009
98537413431970748268711 ~2009
98544292935912657575911 ~2010
98547561231970951224711 ~2009
98547723597883817887311 ~2011
98550749511971014990311 ~2009
98564251677885140133711 ~2011
98564353311971287066311 ~2009
98568005991971360119911 ~2009
985690177713799662487912 ~2011
98573134191971462683911 ~2009
98575479231971509584711 ~2009
98579680191971593603911 ~2009
98587858375915271502311 ~2010
98587966791971759335911 ~2009
98591461977887316957711 ~2011
98591692911971833858311 ~2009
98593534335915612059911 ~2010
98597183599859718359111 ~2011
98597548335915852899911 ~2010
98598555135915913307911 ~2010
985998809313803983330312 ~2011
98602780791972055615911 ~2009
986045898139441835924112 ~2012
98605179231972103584711 ~2009
Exponent Prime Factor Dig. Year
98608555797888684463311 ~2011
986110415970999949944912 ~2013
98621433591972428671911 ~2009
98631227391972624547911 ~2009
98632819311972656386311 ~2009
986381152131564196867312 ~2012
98642085831972841716711 ~2009
98643441111972868822311 ~2009
98647598517891807880911 ~2011
98648148711972962974311 ~2009
98652966591973059331911 ~2009
98655184191973103683911 ~2009
98658932097892714567311 ~2011
98661396591973227931911 ~2009
98668846791973376935911 ~2009
98672868175920372090311 ~2010
98675112111973502242311 ~2009
98677123917894169912911 ~2011
98682183831973643676711 ~2009
98684175015921050500711 ~2010
98685605631973712112711 ~2009
98690797431973815948711 ~2009
98691532791973830655911 ~2009
98695567311973911346311 ~2009
98697919791973958395911 ~2009
Exponent Prime Factor Dig. Year
98703418431974068368711 ~2009
98704608231974092164711 ~2009
98711758191974235163911 ~2009
98712621831974252436711 ~2009
987127848121716812658312 ~2012
98713204431974264088711 ~2009
98724494031974489880711 ~2009
98724983511974499670311 ~2009
98726371191974527423911 ~2009
98730099535923805971911 ~2010
98739119415924347164711 ~2010
98741063511974821270311 ~2009
98744339511974886790311 ~2009
98748328431974966568711 ~2009
98748638577899891085711 ~2011
98749113231974982264711 ~2009
98751444417900115552911 ~2011
98752295991975045919911 ~2009
98759680311975193606311 ~2009
98760373879876037387111 ~2011
98760984711975219694311 ~2009
98769907975926194478311 ~2010
987712025931606784828912 ~2012
98775173991975503479911 ~2009
98779069575926744174311 ~2010
Exponent Prime Factor Dig. Year
98780584191975611683911 ~2009
98787100911975742018311 ~2009
98796205191975924103911 ~2009
98797012575927820754311 ~2010
98799891111975997822311 ~2009
98802150831976043016711 ~2009
98803830831976076616711 ~2009
98806899111976137982311 ~2009
98811924799881192479111 ~2011
98815372735928922363911 ~2010
98816320279881632027111 ~2011
98816374311976327486311 ~2009
98817456231976349124711 ~2009
98821335711976426714311 ~2009
98828153391976563067911 ~2009
98831767911976635358311 ~2009
98833720879883372087111 ~2011
98836102791976722055911 ~2009
98837843535930270611911 ~2010
98842071111976841422311 ~2009
98843754111976875082311 ~2009
98848647111976972942311 ~2009
988588798315817420772912 ~2011
988615488115817847809712 ~2011
98864156217909132496911 ~2011
Home
4.768.925 digits
e-mail
25-05-04