Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
110483058832209661176711 ~2009
110485525192209710503911 ~2009
110487875392209757507911 ~2009
110488241032209764820711 ~2009
110489424776629365486311 ~2011
110491925032209838500711 ~2009
110493893698839511495311 ~2011
1104975217953038810459312 ~2013
110498099512209961990311 ~2009
110504563792210091275911 ~2009
110510062432210201248711 ~2009
110520949192210418983911 ~2009
110524449712210488994311 ~2009
110525952592210519051911 ~2009
1105284942719895128968712 ~2012
110530009918842400792911 ~2011
110532181192210643623911 ~2009
110532738592210654771911 ~2009
110538765832210775316711 ~2009
110543458576632607514311 ~2011
110547314032210946280711 ~2009
110552385778844190861711 ~2011
110555550832211111016711 ~2009
110556564592211131291911 ~2009
1105606069911056060699112 ~2011
Exponent Prime Factor Dig. Year
110560722712211214454311 ~2009
110563894192211277883911 ~2009
110564838616633890316711 ~2011
1105683226135381863235312 ~2012
110570914912211418298311 ~2009
110577144832211542896711 ~2009
110578904512211578090311 ~2009
110581962832211639256711 ~2009
1106043176968574676967912 ~2013
110606587432212131748711 ~2009
110611751218848940096911 ~2011
110613553912212271078311 ~2009
110614315976636858958311 ~2011
1106179258719911226656712 ~2012
110619692512212393850311 ~2009
110625407632212508152711 ~2009
110626270918850101672911 ~2011
110636851312212737026311 ~2009
110639839498851187159311 ~2011
110643879592212877591911 ~2009
110647596592212951931911 ~2009
110657778736639466723911 ~2011
110667372778853389821711 ~2011
110673394498853871559311 ~2011
110676377936640582675911 ~2011
Exponent Prime Factor Dig. Year
110683115032213662300711 ~2009
110686375432213727508711 ~2009
110700537832214010756711 ~2009
110707911112214158222311 ~2009
110708878798856710303311 ~2011
110716788112214335762311 ~2009
1107182749970859695993712 ~2013
110725904392214518087911 ~2009
110726343118858107448911 ~2011
110727630832214552616711 ~2009
110739018736644341123911 ~2011
110747018878859761509711 ~2011
110747803312214956066311 ~2009
110748427432214968548711 ~2009
110748633112214972662311 ~2009
110753921992215078439911 ~2009
110756810416645408624711 ~2011
110758838392215176767911 ~2009
110762238112215244762311 ~2009
110762891512215257830311 ~2009
110780865592215617311911 ~2009
110781799912215635998311 ~2009
110785001936647100115911 ~2011
1107863793759824644859912 ~2013
110792341498863387319311 ~2011
Exponent Prime Factor Dig. Year
1107929123919942724230312 ~2012
110805961792216119235911 ~2009
1108083114719945496064712 ~2012
110808734392216174687911 ~2009
110808960592216179211911 ~2009
110814837712216296754311 ~2009
110815091992216301839911 ~2009
110815092232216301844711 ~2009
110816160112216323202311 ~2009
110821475992216429519911 ~2009
110829159832216583196711 ~2009
110831808416649908504711 ~2011
110835880318866870424911 ~2011
110849743912216994878311 ~2009
110850110392217002207911 ~2009
110850593992217011879911 ~2009
110853504832217070096711 ~2009
110854609432217092188711 ~2009
110855644912217112898311 ~2009
110861898112217237962311 ~2009
110863393376651803602311 ~2011
1108643107128824720784712 ~2012
1108646023911086460239112 ~2011
110871213232217424264711 ~2009
110883068336652984099911 ~2011
Home
4.724.182 digits
e-mail
25-04-13