Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
91192932735471575963911 ~2010
91193527791823870555911 ~2009
91197147591823942951911 ~2009
91198650111823973002311 ~2009
91199639031823992780711 ~2009
912025550323712664307912 ~2012
91203662391824073247911 ~2009
91204238391824084767911 ~2009
91204813191824096263911 ~2009
91207533111824150662311 ~2009
91208311191824166223911 ~2009
91209188119120918811111 ~2011
912122332723715180650312 ~2012
91213689231824273784711 ~2009
91223899497297911959311 ~2010
91233793017298703440911 ~2010
91242397311824847946311 ~2009
91243134591824862691911 ~2009
91244257431824885148711 ~2009
91251349431825026988711 ~2009
91260858831825217176711 ~2009
91265669415475940164711 ~2010
91270533111825410662311 ~2009
91278856311825577126311 ~2009
912824532731036034111912 ~2012
Exponent Prime Factor Dig. Year
91284542391825690847911 ~2009
91286499775477189986311 ~2010
91294964719129496471111 ~2011
91297843431825956868711 ~2009
91305230631826104612711 ~2009
91310373231826207464711 ~2009
91311118311826222366311 ~2009
91314757999131475799111 ~2011
91317959511826359190311 ~2009
91320566031826411320711 ~2009
91321398135479283887911 ~2010
913298753312786182546312 ~2011
91331696535479901791911 ~2010
91335644391826712887911 ~2009
91337761911826755238311 ~2009
913385821116440944779912 ~2011
91339528791826790575911 ~2009
91344784431826895688711 ~2009
91347365631826947312711 ~2009
91349810215480988612711 ~2010
91353827479135382747111 ~2011
91358969631827179392711 ~2009
91363326711827266534311 ~2009
913697314314619157028912 ~2011
91374186591827483731911 ~2009
Exponent Prime Factor Dig. Year
91374679677309974373711 ~2010
91383429199138342919111 ~2011
91384846431827696928711 ~2009
91388783277311102661711 ~2010
91389587991827791759911 ~2009
91390894377311271549711 ~2010
91392179517311374360911 ~2010
913969672971289634486312 ~2013
91401109975484066598311 ~2010
91402951191828059023911 ~2009
91412496711828249934311 ~2009
914128218120110820798312 ~2011
91416256215484975372711 ~2010
91418355831828367116711 ~2009
91421381511828427630311 ~2009
91421467191828429343911 ~2009
91424447991828488959911 ~2009
914249791321941994991312 ~2011
91425432297314034583311 ~2010
91426437591828528751911 ~2009
91430774511828615490311 ~2009
91431309111828626182311 ~2009
91431805911828636118311 ~2009
91437060231828741204711 ~2009
91442371431828847428711 ~2009
Exponent Prime Factor Dig. Year
91443004911828860098311 ~2009
91444939215486696352711 ~2010
91448822511828976450311 ~2009
91449211335486952679911 ~2010
91450391877316031349711 ~2010
91454219031829084380711 ~2009
91454275791829085515911 ~2009
91454605911829092118311 ~2009
91459238631829184772711 ~2009
91462129191829242583911 ~2009
91467249591829344991911 ~2009
91469341191829386823911 ~2009
91469532231829390644711 ~2009
91476755391829535107911 ~2009
91476986031829539720711 ~2009
91477767831829555356711 ~2009
91479837591829596751911 ~2009
91483699311829673986311 ~2009
91483867431829677348711 ~2009
91492220215489533212711 ~2010
914947199321958732783312 ~2011
914956813721958963528912 ~2011
91498344375489900662311 ~2010
91506084711830121694311 ~2009
91506547039150654703111 ~2011
Home
4.768.925 digits
e-mail
25-05-04