Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1019400611332620819561712 ~2012
101945817592038916351911 ~2009
101946071032038921420711 ~2009
101946547192038930943911 ~2009
101948275432038965508711 ~2009
101954717536117283051911 ~2010
101957758792039155175911 ~2009
101958232432039164648711 ~2009
101958659512039173190311 ~2009
101966823112039336462311 ~2009
101969266432039385328711 ~2009
101969673232039393464711 ~2009
101970723776118243426311 ~2010
101975771992039515439911 ~2009
101986168192039723363911 ~2009
101991224216119473452711 ~2010
101991979792039839595911 ~2009
102000062632040001252711 ~2009
1020075204710200752047112 ~2011
102008927392040178547911 ~2009
1020114301340804572052112 ~2012
102021075112040421502311 ~2009
102024699112040493982311 ~2009
102030345712040606914311 ~2009
102031350536121881031911 ~2010
Exponent Prime Factor Dig. Year
102031962592040639251911 ~2009
1020331012316325296196912 ~2011
102037728112040754562311 ~2009
102039794816122387688711 ~2010
102043324192040866483911 ~2009
102047851912040957038311 ~2009
102059811112041196222311 ~2009
102061751032041235020711 ~2009
102078111478166248917711 ~2011
102079794712041595894311 ~2009
102081176632041623532711 ~2009
102088285216125297112711 ~2010
1020975005924503400141712 ~2012
102102650632042053012711 ~2009
102110637478168850997711 ~2011
102113047912042260958311 ~2009
102114586936126875215911 ~2010
102114799192042295983911 ~2009
102115775392042315507911 ~2009
102115789618169263168911 ~2011
102119313478169545077711 ~2011
1021213639910212136399112 ~2011
102121861192042437223911 ~2009
102133850512042677010311 ~2009
102134430616128065836711 ~2010
Exponent Prime Factor Dig. Year
102138197878171055829711 ~2011
1021384075118384913351912 ~2012
102138754378171100349711 ~2011
102144719032042894380711 ~2009
102152310832043046216711 ~2009
102152679832043053596711 ~2009
102155746616129344796711 ~2010
102160347478172827797711 ~2011
102165536032043310720711 ~2009
102177403432043548068711 ~2009
102178265512043565310311 ~2009
102181542112043630842311 ~2009
102181674712043633494311 ~2009
102184843198174787455311 ~2011
102185262298174820983311 ~2011
102189819592043796391911 ~2009
102194954632043899092711 ~2009
102197376232043947524711 ~2009
102207042112044140842311 ~2009
102210310016132618600711 ~2010
102213187976132791278311 ~2010
1022145389918398617018312 ~2012
102215155432044303108711 ~2009
102225146392044502927911 ~2009
102226306736133578403911 ~2010
Exponent Prime Factor Dig. Year
102230156518178412520911 ~2011
102233929192044678583911 ~2009
102242473432044849468711 ~2009
102243051112044861022311 ~2009
102245220232044904404711 ~2009
102247221616134833296711 ~2010
102248719312044974386311 ~2009
102256087792045121755911 ~2009
102258735712045174714311 ~2009
102262536776135752206311 ~2010
102262674832045253496711 ~2009
102266256592045325131911 ~2009
102267554176136053250311 ~2010
102268522432045370448711 ~2009
102271178632045423572711 ~2009
102271923832045438476711 ~2009
102274137712045482754311 ~2009
102278942512045578850311 ~2009
102281322616136879356711 ~2010
102283882312045677646311 ~2009
102288861832045777236711 ~2009
1022925193373650613917712 ~2013
1022971474310229714743112 ~2011
102309091912046181838311 ~2009
102310140712046202814311 ~2009
Home
4.724.182 digits
e-mail
25-04-13