Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
915078709921961889037712 ~2011
915120738120132656238312 ~2011
91513338831830266776711 ~2009
91515705111830314102311 ~2009
91515811191830316223911 ~2009
91516752591830335051911 ~2009
915176648321964239559312 ~2011
915212954973217036392112 ~2013
91521328135491279687911 ~2010
91525444191830508883911 ~2009
91527529431830550588711 ~2009
91535470017322837600911 ~2010
91537822791830756455911 ~2009
91540112031830802240711 ~2009
91541018391830820367911 ~2009
91543767111830875342311 ~2009
91544605311830892106311 ~2009
91544760591830895211911 ~2009
915476121116478570179912 ~2011
91551869511831037390311 ~2009
91552206711831044134311 ~2009
915538984314648623748912 ~2011
91557163311831143266311 ~2009
91557379797324590383311 ~2010
91557574615493454476711 ~2010
Exponent Prime Factor Dig. Year
91560075591831201511911 ~2009
91564677591831293551911 ~2009
915702612731133888831912 ~2012
91571631111831432622311 ~2009
91571875617325750048911 ~2010
91572210015494332600711 ~2010
91573425111831468502311 ~2009
91574258631831485172711 ~2009
91588705791831774115911 ~2009
91600729215496043752711 ~2010
91604719791832094395911 ~2009
91606484631832129692711 ~2009
91607109831832142196711 ~2009
91611856791832237135911 ~2009
91612452591832249051911 ~2009
91613147631832262952711 ~2009
91622875575497372534311 ~2010
91627447431832548948711 ~2009
916328588323824543295912 ~2012
91638350479163835047111 ~2011
91640730711832814614311 ~2009
91644097335498645839911 ~2010
91644462177331556973711 ~2010
916471708721995321008912 ~2011
91647844575498870674311 ~2010
Exponent Prime Factor Dig. Year
91649547591832990951911 ~2009
91650202191833004043911 ~2009
91653126175499187570311 ~2010
91655820591833116411911 ~2009
91662529191833250583911 ~2009
91665711711833314234311 ~2009
91666625511833332510311 ~2009
91667035311833340706311 ~2009
91670307831833406156711 ~2009
91670518431833410368711 ~2009
91673870391833477407911 ~2009
91675163775500509826311 ~2010
91676351991833527039911 ~2009
91684444431833688888711 ~2009
91688661111833773222311 ~2009
91688701431833774028711 ~2009
91691373711833827474311 ~2009
91703303031834066060711 ~2009
91704862911834097258311 ~2009
91704864711834097294311 ~2009
91707566031834151320711 ~2009
91708451397336676111311 ~2010
91712832591834256651911 ~2009
91713589615502815376711 ~2010
91714516311834290326311 ~2009
Exponent Prime Factor Dig. Year
91716376791834327535911 ~2009
91717770111834355402311 ~2009
91720087497337606999311 ~2010
91720612431834412248711 ~2009
91721814717337745176911 ~2010
917223031322013352751312 ~2011
917257388912841603444712 ~2011
91728666177338293293711 ~2010
91740544431834810888711 ~2009
917422704736696908188112 ~2012
91743058911834861178311 ~2009
91745190079174519007111 ~2011
91747502391834950047911 ~2009
91755549111835110982311 ~2009
91760418015505625080711 ~2010
91762091511835241830311 ~2009
917687893320189133652712 ~2011
91770254775506215286311 ~2010
91772856735506371403911 ~2010
91777219615506633176711 ~2010
91779686719177968671111 ~2011
91780343631835606872711 ~2009
91781218191835624363911 ~2009
91786226391835724527911 ~2009
91788410511835768210311 ~2009
Home
4.768.925 digits
e-mail
25-05-04