Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
396569656972968816869712 ~2011
3965866763793173352710 ~2006
3966044003793208800710 ~2006
39662476999518994477711 ~2009
396633802921418225356712 ~2009
3966338423793267684710 ~2006
39663674873173093989711 ~2007
3966559559793311911910 ~2006
3966645731793329146310 ~2006
39670331572380219894311 ~2007
3967083839793416767910 ~2006
3967356671793471334310 ~2006
3967399511793479902310 ~2006
3967406279793481255910 ~2006
3967598759793519751910 ~2006
39676680172380600810311 ~2007
39676838695554757416711 ~2008
39677510093174200807311 ~2007
3967799939793559987910 ~2006
3967838051793567610310 ~2006
39680148793968014879111 ~2008
39680972993174477839311 ~2007
39683697193968369719111 ~2008
3968415023793683004710 ~2006
3968532563793706512710 ~2006
Exponent Prime Factor Digits Year
3968572631793714526310 ~2006
3968707163793741432710 ~2006
3968723939793744787910 ~2006
3968758331793751666310 ~2006
3968803991793760798310 ~2006
3968829323793765864710 ~2006
39688686412381321184711 ~2007
39689264176350282267311 ~2008
3968950319793790063910 ~2006
3969188843793837768710 ~2006
39692476732381548603911 ~2007
3969331739793866347910 ~2006
3969369251793873850310 ~2006
396939897721434754475912 ~2009
396945671916671718219912 ~2009
3969484763793896952710 ~2006
3969655103793931020710 ~2006
3969663779793932755910 ~2006
3969854711793970942310 ~2006
3969925031793985006310 ~2006
39699678293175974263311 ~2007
39700086313970008631111 ~2008
3970017923794003584710 ~2006
3970268903794053780710 ~2006
39702979439528715063311 ~2009
Exponent Prime Factor Digits Year
3970370003794074000710 ~2006
3970436831794087366310 ~2006
39704609332382276559911 ~2007
39707164273970716427111 ~2008
3970924403794184880710 ~2006
3971253971794250794310 ~2006
3971276999794255399910 ~2006
3971285159794257031910 ~2006
3971300111794260022310 ~2006
39713098212382785892711 ~2007
3971377043794275408710 ~2006
3971575931794315186310 ~2006
3971710079794342015910 ~2006
3971814323794362864710 ~2006
3971921003794384200710 ~2006
3971945051794389010310 ~2006
3972015539794403107910 ~2006
3972311771794462354310 ~2006
3972325223794465044710 ~2006
39723702773177896221711 ~2007
3972449231794489846310 ~2006
3972525071794505014310 ~2006
39726915532383614931911 ~2007
39728325173178266013711 ~2007
397288633148469213238312 ~2010
Exponent Prime Factor Digits Year
3972939611794587922310 ~2006
39731078713973107871111 ~2008
3973160591794632118310 ~2006
3973165103794633020710 ~2006
397317982326222986831912 ~2010
3973276379794655275910 ~2006
3973600331794720066310 ~2006
3974009423794801884710 ~2006
3974107523794821504710 ~2006
3974260931794852186310 ~2006
3974272691794854538310 ~2006
3974347991794869598310 ~2006
39744420372384665222311 ~2007
39744432293179554583311 ~2007
3974575079794915015910 ~2006
3974640311794928062310 ~2006
3974766011794953202310 ~2006
3974774183794954836710 ~2006
39747847332384870839911 ~2007
3974897291794979458310 ~2006
3974970383794994076710 ~2006
3975069779795013955910 ~2006
3975134963795026992710 ~2006
3975205991795041198310 ~2006
3975227411795045482310 ~2006
Home
5.187.277 digits
e-mail
25-11-17