Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
90215146335412908779911 ~2010
90215450817217236064911 ~2010
90218734911804374698311 ~2009
90220586719022058671111 ~2010
90221445135413286707911 ~2010
90226238991804524779911 ~2009
90229717911804594358311 ~2009
90233423511804668470311 ~2009
90238202775414292166311 ~2010
902391663763167416459112 ~2013
90243760791804875215911 ~2009
90245767911804915358311 ~2009
90247099431804941988711 ~2009
90248508175414910490311 ~2010
90248842377219907389711 ~2010
90249392991804987859911 ~2009
90254015997220321279311 ~2010
90254302311805086046311 ~2009
90260143015415608580711 ~2010
90265617591805312351911 ~2009
90266958711805339174311 ~2009
90270978111805419562311 ~2009
90274725297221978023311 ~2010
90280543191805610863911 ~2009
90288077511805761550311 ~2009
Exponent Prime Factor Dig. Year
90289360431805787208711 ~2009
90292238031805844760711 ~2009
90292479799029247979111 ~2010
90298463397223877071311 ~2010
90298851711805977034311 ~2009
90302258575418135514311 ~2010
90304843215418290592711 ~2010
90309061791806181235911 ~2009
90311839375418710362311 ~2010
90315496431806309928711 ~2009
90323735697225898855311 ~2010
90326165031806523300711 ~2009
90327376431806547528711 ~2009
90332982711806659654311 ~2009
90333978231806679564711 ~2009
90339369111806787382311 ~2009
903466492716262396868712 ~2011
90347728639034772863111 ~2010
90352854711807057094311 ~2009
90354859615421291576711 ~2010
90359547015421572820711 ~2010
90366127191807322543911 ~2009
90367433511807348670311 ~2009
90372248631807444972711 ~2009
90378109791807562195911 ~2009
Exponent Prime Factor Dig. Year
90379460415422767624711 ~2010
90386567991807731359911 ~2009
90395078217231606256911 ~2010
90396308631807926172711 ~2009
903981293321695551039312 ~2011
90413804175424828250311 ~2010
90414031791808280635911 ~2009
90417430191808348603911 ~2009
90418951431808379028711 ~2009
90426028431808520568711 ~2009
90426296775425577806311 ~2010
90426889617234151168911 ~2010
90433119111808662382311 ~2009
90434915397234793231311 ~2010
90439209711808784194311 ~2009
90448900311808978006311 ~2009
90450848031809016960711 ~2009
90455527311809110546311 ~2009
90456380391809127607911 ~2009
90461416911809228338311 ~2009
90462501591809250031911 ~2009
90464993031809299860711 ~2009
90465689031809313780711 ~2009
90466201791809324035911 ~2009
90467237877237379029711 ~2010
Exponent Prime Factor Dig. Year
90469213431809384268711 ~2009
90474743631809494872711 ~2009
90474760431809495208711 ~2009
904772244714476355915312 ~2011
90479164215428749852711 ~2010
90481644831809632896711 ~2009
904852215114477635441712 ~2011
904861609721716678632912 ~2011
90489197217239135776911 ~2010
90500384991810007699911 ~2009
90502502391810050047911 ~2009
90503989791810079795911 ~2009
90508726815430523608711 ~2010
90509420511810188410311 ~2009
90516875391810337507911 ~2009
90521170311810423406311 ~2009
905234059314483744948912 ~2011
90523524111810470482311 ~2009
90527707191810554143911 ~2009
90532930311810658606311 ~2009
90541722919054172291111 ~2010
90544680117243574408911 ~2010
90546991191810939823911 ~2009
90551750391811035007911 ~2009
90553103991811062079911 ~2009
Home
4.768.925 digits
e-mail
25-05-04