Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
91347365631826947312711 ~2009
91349810215480988612711 ~2010
91353827479135382747111 ~2011
91358969631827179392711 ~2009
91363326711827266534311 ~2009
913697314314619157028912 ~2011
91374186591827483731911 ~2009
91374679677309974373711 ~2010
91383429199138342919111 ~2011
91384846431827696928711 ~2009
91388783277311102661711 ~2010
91389587991827791759911 ~2009
91390894377311271549711 ~2010
91392179517311374360911 ~2010
913969672971289634486312 ~2013
91401109975484066598311 ~2010
91402951191828059023911 ~2009
91412496711828249934311 ~2009
914128218120110820798312 ~2011
91416256215484975372711 ~2010
91418355831828367116711 ~2009
91421381511828427630311 ~2009
91421467191828429343911 ~2009
91424447991828488959911 ~2009
914249791321941994991312 ~2011
Exponent Prime Factor Dig. Year
91425432297314034583311 ~2010
91426437591828528751911 ~2009
91430774511828615490311 ~2009
91431309111828626182311 ~2009
91431805911828636118311 ~2009
91437060231828741204711 ~2009
91442371431828847428711 ~2009
91443004911828860098311 ~2009
91444939215486696352711 ~2010
91448822511828976450311 ~2009
91449211335486952679911 ~2010
91450391877316031349711 ~2010
91454219031829084380711 ~2009
91454275791829085515911 ~2009
91454605911829092118311 ~2009
91459238631829184772711 ~2009
91462129191829242583911 ~2009
91467249591829344991911 ~2009
91469341191829386823911 ~2009
91469532231829390644711 ~2009
91476755391829535107911 ~2009
91476986031829539720711 ~2009
91477767831829555356711 ~2009
91479837591829596751911 ~2009
91483699311829673986311 ~2009
Exponent Prime Factor Dig. Year
91483867431829677348711 ~2009
91492220215489533212711 ~2010
914947199321958732783312 ~2011
91498344375489900662311 ~2010
91506084711830121694311 ~2009
91506547039150654703111 ~2011
915078709921961889037712 ~2011
915120738120132656238312 ~2011
91513338831830266776711 ~2009
91515705111830314102311 ~2009
91515811191830316223911 ~2009
91516752591830335051911 ~2009
915176648321964239559312 ~2011
915212954973217036392112 ~2013
91521328135491279687911 ~2010
91525444191830508883911 ~2009
91527529431830550588711 ~2009
91535470017322837600911 ~2010
91537822791830756455911 ~2009
91540112031830802240711 ~2009
91541018391830820367911 ~2009
91543767111830875342311 ~2009
91544605311830892106311 ~2009
91544760591830895211911 ~2009
915476121116478570179912 ~2011
Exponent Prime Factor Dig. Year
91551869511831037390311 ~2009
91552206711831044134311 ~2009
915538984314648623748912 ~2011
91557163311831143266311 ~2009
91557379797324590383311 ~2010
91557574615493454476711 ~2010
91560075591831201511911 ~2009
91564677591831293551911 ~2009
915702612731133888831912 ~2012
91571631111831432622311 ~2009
91571875617325750048911 ~2010
91572210015494332600711 ~2010
91573425111831468502311 ~2009
91574258631831485172711 ~2009
91588705791831774115911 ~2009
91600729215496043752711 ~2010
91604719791832094395911 ~2009
91606484631832129692711 ~2009
91607109831832142196711 ~2009
91611856791832237135911 ~2009
91612452591832249051911 ~2009
91613147631832262952711 ~2009
91622875575497372534311 ~2010
91627447431832548948711 ~2009
916328588323824543295912 ~2012
Home
4.724.182 digits
e-mail
25-04-13