Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
91031996031820639920711 ~2009
91034440399103444039111 ~2010
91035393831820707876711 ~2009
91042233711820844674311 ~2009
91051192911821023858311 ~2009
91053792591821075851911 ~2009
91053954591821079091911 ~2009
910559760714568956171312 ~2011
91060951911821219038311 ~2009
91061515311821230306311 ~2009
91065218631821304372711 ~2009
91065596031821311920711 ~2009
910681340912749538772712 ~2011
91069145599106914559111 ~2010
91069159335464149559911 ~2010
91070360397285628831311 ~2010
91072040631821440812711 ~2009
91074561591821491231911 ~2009
91077345231821546904711 ~2009
91078523391821570467911 ~2009
91081831791821636635911 ~2009
91081862391821637247911 ~2009
91083841431821676828711 ~2009
91087837911821756758311 ~2009
91091971311821839426311 ~2009
Exponent Prime Factor Dig. Year
91095085431821901708711 ~2009
91103069511822061390311 ~2009
91104176391822083527911 ~2009
91104747597288379807311 ~2010
911096615916399739086312 ~2011
91113314511822266290311 ~2009
91114421391822288427911 ~2009
91122870591822457411911 ~2009
91128877431822577548711 ~2009
911298596943742332651312 ~2012
91131944391822638887911 ~2009
91135638897290851111311 ~2010
91135816791822716335911 ~2009
91137198591822743971911 ~2009
91139048511822780970311 ~2009
91143554031822871080711 ~2009
91151472591823029451911 ~2009
91151807577292144605711 ~2010
911544994330992529806312 ~2012
91158829911823176598311 ~2009
91162525311823250506311 ~2009
91168015497293441239311 ~2010
91168598631823371972711 ~2009
91169785975470187158311 ~2010
91171315311823426306311 ~2009
Exponent Prime Factor Dig. Year
91174581111823491622311 ~2009
91177446831823548936711 ~2009
91178368791823567375911 ~2009
91181697711823633954311 ~2009
91185272511823705450311 ~2009
91191205791823824115911 ~2009
91191587991823831759911 ~2009
91192932735471575963911 ~2010
91193527791823870555911 ~2009
91197147591823942951911 ~2009
91198650111823973002311 ~2009
91199639031823992780711 ~2009
912025550323712664307912 ~2012
91203662391824073247911 ~2009
91204238391824084767911 ~2009
91204813191824096263911 ~2009
91207533111824150662311 ~2009
91208311191824166223911 ~2009
91209188119120918811111 ~2011
912122332723715180650312 ~2012
91213689231824273784711 ~2009
91223899497297911959311 ~2010
91233793017298703440911 ~2010
91242397311824847946311 ~2009
91243134591824862691911 ~2009
Exponent Prime Factor Dig. Year
91244257431824885148711 ~2009
91251349431825026988711 ~2009
91260858831825217176711 ~2009
91265669415475940164711 ~2010
91270533111825410662311 ~2009
91278856311825577126311 ~2009
912824532731036034111912 ~2012
91284542391825690847911 ~2009
91286499775477189986311 ~2010
91294964719129496471111 ~2011
91297843431825956868711 ~2009
91305230631826104612711 ~2009
91310373231826207464711 ~2009
91311118311826222366311 ~2009
91314757999131475799111 ~2011
91317959511826359190311 ~2009
91320566031826411320711 ~2009
91321398135479283887911 ~2010
913298753312786182546312 ~2011
91331696535479901791911 ~2010
91335644391826712887911 ~2009
91337761911826755238311 ~2009
913385821116440944779912 ~2011
91339528791826790575911 ~2009
91344784431826895688711 ~2009
Home
4.724.182 digits
e-mail
25-04-13