Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3246501431649300286310 ~2005
32465355412597228432911 ~2007
3246576659649315331910 ~2005
3246776303649355260710 ~2005
3246793703649358740710 ~2005
32468712611948122756711 ~2006
3246878423649375684710 ~2005
3247105223649421044710 ~2005
3247118051649423610310 ~2005
3247139123649427824710 ~2005
32472315673247231567111 ~2007
32472734872597818789711 ~2007
32476387811948583268711 ~2006
3247659419649531883910 ~2005
3247689083649537816710 ~2005
32476914171948614850311 ~2006
3247712771649542554310 ~2005
3248046479649609295910 ~2005
3248069939649613987910 ~2005
32481484192598518735311 ~2007
32483411392598672911311 ~2007
3248367203649673440710 ~2005
32483976731949038603911 ~2006
32485231012598818480911 ~2007
3248537111649707422310 ~2005
Exponent Prime Factor Digits Year
32485927931949155675911 ~2006
3248657519649731503910 ~2005
3248664719649732943910 ~2005
3248990099649798019910 ~2005
3249009563649801912710 ~2005
3249122171649824434310 ~2005
3249187559649837511910 ~2005
3249332591649866518310 ~2005
3249410831649882166310 ~2005
3249468671649893734310 ~2005
3249600383649920076710 ~2005
3249627131649925426310 ~2005
3249632891649926578310 ~2005
3249842171649968434310 ~2005
3249932639649986527910 ~2005
32501869972600149597711 ~2007
3250212851650042570310 ~2005
3250263011650052602310 ~2005
3250353311650070662310 ~2005
32504566795850822022311 ~2008
3250573283650114656710 ~2005
325058421713002336868112 ~2008
3250647131650129426310 ~2005
3250649999650129999910 ~2005
3250679891650135978310 ~2005
Exponent Prime Factor Digits Year
3250703279650140655910 ~2005
325073914741609461081712 ~2010
3250855571650171114310 ~2005
32508978294551256960711 ~2007
32509360215201497633711 ~2008
3250975151650195030310 ~2005
32510109075201617451311 ~2008
32510141771950608506311 ~2006
32510875971950652558311 ~2006
325109713913004388556112 ~2008
32511826734551655742311 ~2007
32512266795852208022311 ~2008
3251302811650260562310 ~2005
32513739892601099191311 ~2007
3251470823650294164710 ~2005
3251523911650304782310 ~2005
3251609423650321884710 ~2005
32516366572601309325711 ~2007
3251707919650341583910 ~2005
32517345112601387608911 ~2007
3251758091650351618310 ~2005
3251826191650365238310 ~2005
3252039431650407886310 ~2005
3252126959650425391910 ~2005
3252189599650437919910 ~2005
Exponent Prime Factor Digits Year
3252326711650465342310 ~2005
3252442859650488571910 ~2005
32524863712601989096911 ~2007
32525043892602003511311 ~2007
32525078934553511050311 ~2007
3252579779650515955910 ~2005
3252606011650521202310 ~2005
32526324971951579498311 ~2006
3252651659650530331910 ~2005
3252696119650539223910 ~2005
3252711419650542283910 ~2005
3252803663650560732710 ~2005
3252858131650571626310 ~2005
32528795715855183227911 ~2008
3252961931650592386310 ~2005
32529685974554156035911 ~2007
32530396192602431695311 ~2007
32530546993253054699111 ~2007
3253204919650640983910 ~2005
3253303811650660762310 ~2005
3253313099650662619910 ~2005
325334125126026730008112 ~2009
3253547879650709575910 ~2005
32536836131952210167911 ~2006
3253705943650741188710 ~2005
Home
5.247.179 digits
e-mail
25-12-14