Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
471137597311307302335312 ~2009
47116713132827002787911 ~2008
4712110451942422090310 ~2007
4712225183942445036710 ~2007
4712379359942475871910 ~2007
47126943598482849846311 ~2009
4712985911942597182310 ~2007
4713143399942628679910 ~2007
4713176183942635236710 ~2007
4713264683942652936710 ~2007
47133080234713308023111 ~2008
4713310559942662111910 ~2007
4713417119942683423910 ~2007
47136186012828171160711 ~2008
47138361372828301682311 ~2008
4713840251942768050310 ~2007
47138561936599398670311 ~2009
47139294776599501267911 ~2009
47139616332828376979911 ~2008
47140624212828437452711 ~2008
4714415063942883012710 ~2007
4714583651942916730310 ~2007
4714600343942920068710 ~2007
4714761059942952211910 ~2007
4714803491942960698310 ~2007
Exponent Prime Factor Digits Year
47148102794714810279111 ~2008
4715033363943006672710 ~2007
4715056019943011203910 ~2007
47151891132829113467911 ~2008
47155166572829309994311 ~2008
4715559839943111967910 ~2007
47156842972829410578311 ~2008
4715752523943150504710 ~2007
4715862251943172450310 ~2007
4715878571943175714310 ~2007
4715961203943192240710 ~2007
4715963111943192622310 ~2007
47160275273772822021711 ~2008
4716331391943266278310 ~2007
47163346193773067695311 ~2008
47164352332829861139911 ~2008
4716614603943322920710 ~2007
47166329093773306327311 ~2008
4716761411943352282310 ~2007
47168434212830106052711 ~2008
4716947591943389518310 ~2007
4716976703943395340710 ~2007
47174059932830443595911 ~2008
4717488959943497791910 ~2007
4717508063943501612710 ~2007
Exponent Prime Factor Digits Year
47175149278491526868711 ~2009
4717676423943535284710 ~2007
4717785419943557083910 ~2007
4717822871943564574310 ~2007
4718217671943643534310 ~2007
47182258932830935535911 ~2008
4718459771943691954310 ~2007
47185770918493438763911 ~2009
47192713973775417117711 ~2008
47194909493775592759311 ~2008
4719529439943905887910 ~2007
4719620579943924115910 ~2007
4719830231943966046310 ~2007
4719884399943976879910 ~2007
472014294110384314470312 ~2009
47202699434720269943111 ~2008
47203666976608513375911 ~2009
4720415543944083108710 ~2007
4720421591944084318310 ~2007
47209657193776772575311 ~2008
4721045963944209192710 ~2007
4721471003944294200710 ~2007
472207865933998966344912 ~2010
4722189539944437907910 ~2007
47222330234722233023111 ~2008
Exponent Prime Factor Digits Year
4722427763944485552710 ~2007
4722486479944497295910 ~2007
4722487559944497511910 ~2007
4722701843944540368710 ~2007
472273392110390014626312 ~2009
4722998099944599619910 ~2007
4723053431944610686310 ~2007
4723128383944625676710 ~2007
47232551537557208244911 ~2009
4723321019944664203910 ~2007
4723399931944679986310 ~2007
4723502159944700431910 ~2007
4723543463944708692710 ~2007
47236556812834193408711 ~2008
47237745413779019632911 ~2008
4723813271944762654310 ~2007
4723936499944787299910 ~2007
4724146103944829220710 ~2007
4724356823944871364710 ~2007
4724373191944874638310 ~2007
47244483176614227643911 ~2009
4724541551944908310310 ~2007
4724574611944914922310 ~2007
47247291173779783293711 ~2008
47247474413779797952911 ~2008
Home
4.768.925 digits
e-mail
25-05-04