Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
70489633311409792666311 ~2008
70494911031409898220711 ~2008
70498559511409971190311 ~2008
70499216534229952991911 ~2009
70502541111410050822311 ~2008
70502676831410053536711 ~2008
70509367311410187346311 ~2008
70511060334230663619911 ~2009
70511718111410234362311 ~2008
70514016774230841006311 ~2009
70521888231410437764711 ~2008
705228178716925476288912 ~2011
70530076311410601526311 ~2008
70530683391410613667911 ~2008
70531971179874475963911 ~2010
705408478311286535652912 ~2010
70540906431410818128711 ~2008
70541350431410827008711 ~2008
70545236391410904727911 ~2008
70545660231410913204711 ~2008
705489268739507399047312 ~2011
705540946915521900831912 ~2010
70560970315644877624911 ~2009
70561900814233714048711 ~2009
70567127534234027651911 ~2009
Exponent Prime Factor Dig. Year
70568531031411370620711 ~2008
70568729575645498365711 ~2009
70569511791411390235911 ~2008
70570113231411402264711 ~2008
70570166631411403332711 ~2008
70573271631411465432711 ~2008
70577114991411542299911 ~2008
70579663191411593263911 ~2008
705848344712705270204712 ~2010
70584955191411699103911 ~2008
70589940014235396400711 ~2009
70591486191411829723911 ~2008
70593845391411876907911 ~2008
70595169231411903384711 ~2008
70600163031412003260711 ~2008
70600766031412015320711 ~2008
70605346934236320815911 ~2009
70605934334236356059911 ~2009
70607214774236432886311 ~2009
70607470517060747051111 ~2010
70609710231412194204711 ~2008
70610814111412216282311 ~2008
70612718511412254370311 ~2008
70612937631412258752711 ~2008
70615338614236920316711 ~2009
Exponent Prime Factor Dig. Year
70616178595649294287311 ~2009
70616889711412337794311 ~2008
70618060334237083619911 ~2009
70618980591412379611911 ~2008
70619687215649574976911 ~2009
706203227912711658102312 ~2010
70628198991412563979911 ~2008
70628628831412572576711 ~2008
70629055191412581103911 ~2008
70629394191412587883911 ~2008
70631312174237878730311 ~2009
70636860374238211622311 ~2009
70636937391412738747911 ~2008
706372519133905880916912 ~2011
70639063311412781266311 ~2008
70642090791412841815911 ~2008
70642941231412858824711 ~2008
70646470495651717639311 ~2009
70649947911412998958311 ~2008
70650301734239018103911 ~2009
70654244031413084880711 ~2008
70657314831413146296711 ~2008
706577548915544706075912 ~2010
70663180431413263608711 ~2008
70666400414239984024711 ~2009
Exponent Prime Factor Dig. Year
70666876431413337528711 ~2008
70677109574240626574311 ~2009
70677881031413557620711 ~2008
70678755831413575116711 ~2008
70681279397068127939111 ~2010
70682052231413641044711 ~2008
706833279711309332475312 ~2010
70684877031413697540711 ~2008
70686443991413728879911 ~2008
70686588734241195323911 ~2009
70694988111413899762311 ~2008
70703390631414067812711 ~2008
70703590334242215419911 ~2009
70705770711414115414311 ~2008
70706797191414135943911 ~2008
70711164711414223294311 ~2008
70711258791414225175911 ~2008
707115757311313852116912 ~2010
70712984991414259699911 ~2008
70716755031414335100711 ~2008
70716819231414336384711 ~2008
70717442991414348859911 ~2008
70720413734243224823911 ~2009
70723769814243426188711 ~2009
707280835726876671756712 ~2011
Home
4.724.182 digits
e-mail
25-04-13