Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
63470628111269412562311 ~2008
63473455311269469106311 ~2008
63473839431269476788711 ~2008
63474799911269495998311 ~2008
63479033275078322661711 ~2009
634811107313965844360712 ~2010
63483499191269669983911 ~2008
634848881354597003791912 ~2012
634850196110157603137712 ~2010
63485162476348516247111 ~2009
63486533511269730670311 ~2008
63487772031269755440711 ~2008
634883212913967430683912 ~2010
63498044031269960880711 ~2008
63500151231270003024711 ~2008
63500271115080021688911 ~2009
63500723631270014472711 ~2008
63501192711270023854311 ~2008
63504469191270089383911 ~2008
63505910631270118212711 ~2008
63508873911270177478311 ~2008
63510181973810610918311 ~2009
63512047311270240946311 ~2008
63515905375081272429711 ~2009
63521784295081742743311 ~2009
Exponent Prime Factor Dig. Year
63522804111270456082311 ~2008
635245705319057371159112 ~2010
63525088431270501768711 ~2008
63525448133811526887911 ~2009
63530837391270616747911 ~2008
63532736698894583136711 ~2010
63532770711270655414311 ~2008
63538899076353889907111 ~2009
63539132836353913283111 ~2009
63539981511270799630311 ~2008
63541716231270834324711 ~2008
63542484715083398776911 ~2009
63542766711270855334311 ~2008
63544138315083531064911 ~2009
63547743733812864623911 ~2009
63549648231270992964711 ~2008
63550671111271013422311 ~2008
63553953231271079064711 ~2008
63554263615084341088911 ~2009
63554587573813275254311 ~2009
63556023591271120471911 ~2008
63560317495084825399311 ~2009
63560358591271207171911 ~2008
63561755031271235100711 ~2008
63562161373813729682311 ~2009
Exponent Prime Factor Dig. Year
63567014511271340290311 ~2008
63572648391271452967911 ~2008
63572887191271457743911 ~2008
63576301795086104143311 ~2009
63580337391271606747911 ~2008
63580998591271619971911 ~2008
63584913111271698262311 ~2008
63585316333815118979911 ~2009
635855152747053281299912 ~2011
63586179111271723582311 ~2008
63590511231271810224711 ~2008
63591862191271837243911 ~2008
63592667031271853340711 ~2008
63593583373815615002311 ~2009
63593605191271872103911 ~2008
63595447311271908946311 ~2008
63595965831271919316711 ~2008
63599696631271993932711 ~2008
63600129591272002591911 ~2008
63603542391272070847911 ~2008
63605131431272102628711 ~2008
63605497915088439832911 ~2009
63606654013816399240711 ~2009
63608177875088654229711 ~2009
63614521013816871260711 ~2009
Exponent Prime Factor Dig. Year
63617283413817037004711 ~2009
63618895373817133722311 ~2009
63620597031272411940711 ~2008
63620735511272414710311 ~2008
63623338973817400338311 ~2009
63624040911272480818311 ~2008
63626753391272535067911 ~2008
63627390831272547816711 ~2008
63627755991272555119911 ~2008
63629907231272598144711 ~2008
63630036533817802191911 ~2009
63630384831272607696711 ~2008
63635114575090809165711 ~2009
63635507511272710150311 ~2008
63639274911272785498311 ~2008
63639290631272785812711 ~2008
63639350031272787000711 ~2008
63641048695091283895311 ~2009
63641684031272833680711 ~2008
63642660591272853211911 ~2008
63643279191272865583911 ~2008
63646967631272939352711 ~2008
63649398533818963911911 ~2009
63650035315092002824911 ~2009
63650362311273007246311 ~2008
Home
4.768.925 digits
e-mail
25-05-04