Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18321090071832109007111 ~2005
18321239271465699141711 ~2005
1832148371366429674310 ~2003
1832162243366432448710 ~2003
1832177843366435568710 ~2003
1832201879366440375910 ~2003
1832226083366445216710 ~2003
1832235539366447107910 ~2003
1832391791366478358310 ~2003
18324280611465942448911 ~2005
1832473679366494735910 ~2003
1832625731366525146310 ~2003
1832638991366527798310 ~2003
18326441476230990099911 ~2006
1832682503366536500710 ~2003
1832718659366543731910 ~2003
18328368913299106403911 ~2006
18328599292566003900711 ~2005
18328869298797857259311 ~2007
18329096571099745794311 ~2005
1833006491366601298310 ~2003
18330122811466409824911 ~2005
18330266811466421344911 ~2005
18330397811099823868711 ~2005
1833062771366612554310 ~2003
Exponent Prime Factor Digits Year
18331775811099906548711 ~2005
1833201323366640264710 ~2003
18332049371099922962311 ~2005
18332671731099960303911 ~2005
1833301391366660278310 ~2003
1833336539366667307910 ~2003
1833365291366673058310 ~2003
1833429203366685840710 ~2003
18334585371466766829711 ~2005
1833477911366695582310 ~2003
1833523619366704723910 ~2003
1833565271366713054310 ~2003
1833571583366714316710 ~2003
1833575483366715096710 ~2003
18335912391466872991311 ~2005
18335964912933754385711 ~2006
1833780023366756004710 ~2003
1833848651366769730310 ~2003
1833865079366773015910 ~2003
1833962951366792590310 ~2003
1833977903366795580710 ~2003
1834021751366804350310 ~2003
1834026539366805307910 ~2003
1834066859366813371910 ~2003
18341686811100501208711 ~2005
Exponent Prime Factor Digits Year
18342158571100529514311 ~2005
18342216892567910364711 ~2005
18343362411467468992911 ~2005
1834382831366876566310 ~2003
1834393391366878678310 ~2003
1834436711366887342310 ~2003
1834499399366899879910 ~2003
18345009291467600743311 ~2005
1834554251366910850310 ~2003
1834560239366912047910 ~2003
1834639451366927890310 ~2003
1834680059366936011910 ~2003
1834706099366941219910 ~2003
18347128371100827702311 ~2005
1834756691366951338310 ~2003
1834773119366954623910 ~2003
1834863623366972724710 ~2003
1834923179366984635910 ~2003
1834944383366988876710 ~2003
18350017311468001384911 ~2005
1835048003367009600710 ~2003
1835201111367040222310 ~2003
1835204951367040990310 ~2003
1835265959367053191910 ~2003
1835291123367058224710 ~2003
Exponent Prime Factor Digits Year
18352923771101175426311 ~2005
1835353823367070764710 ~2003
1835428583367085716710 ~2003
1835464979367092995910 ~2003
1835480411367096082310 ~2003
18355558611101333516711 ~2005
18356178713304112167911 ~2006
1835619563367123912710 ~2003
18356510991468520879311 ~2005
18356605994405585437711 ~2006
1835691491367138298310 ~2003
1835740943367148188710 ~2003
1835756399367151279910 ~2003
18358059531101483571911 ~2005
18358246331101494779911 ~2005
1835827211367165442310 ~2003
1835835971367167194310 ~2003
18358381611101502896711 ~2005
1835840459367168091910 ~2003
1835848583367169716710 ~2003
1835850143367170028710 ~2003
1835853143367170628710 ~2003
1835887199367177439910 ~2003
18358918671468713493711 ~2005
18359466771101568006311 ~2005
Home
5.247.179 digits
e-mail
25-12-14