Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4212525623842505124710 ~2006
42125635673370050853711 ~2008
42125925132527555507911 ~2007
42129673219268528106311 ~2009
42130663397583519410311 ~2009
4213091231842618246310 ~2006
42131126212527867572711 ~2007
4213134203842626840710 ~2006
42132334212527940052711 ~2007
42133437535898681254311 ~2008
42137971493371037719311 ~2008
4213886723842777344710 ~2006
421391944912641758347112 ~2009
4214363183842872636710 ~2006
4214383643842876728710 ~2006
421443297710114639144912 ~2009
4214708111842941622310 ~2006
4214772143842954428710 ~2006
4214912363842982472710 ~2006
4215402839843080567910 ~2006
4215576119843115223910 ~2006
4215939443843187888710 ~2006
42159453172529567190311 ~2007
4216024283843204856710 ~2006
4216076159843215231910 ~2006
Exponent Prime Factor Digits Year
4216397879843279575910 ~2006
4216411691843282338310 ~2006
42165298975903141855911 ~2008
4216662539843332507910 ~2006
4216849163843369832710 ~2006
4217023319843404663910 ~2006
4217201063843440212710 ~2006
4217219999843443999910 ~2006
4217344511843468902310 ~2006
4217449259843489851910 ~2006
4217473703843494740710 ~2006
4217539211843507842310 ~2006
42176572612530594356711 ~2007
4217742383843548476710 ~2006
4218015731843603146310 ~2006
4218171179843634235910 ~2006
4218264191843652838310 ~2006
4218351983843670396710 ~2006
421847235154840140563112 ~2011
42185182793374814623311 ~2008
4218634331843726866310 ~2006
42189904932531394295911 ~2007
42190385412531423124711 ~2007
4219087403843817480710 ~2006
42191041812531462508711 ~2007
Exponent Prime Factor Digits Year
4219233971843846794310 ~2006
4219267523843853504710 ~2006
421930027113501760867312 ~2009
4219383071843876614310 ~2006
4219723283843944656710 ~2006
422012575710128301816912 ~2009
4220154479844030895910 ~2006
4220314823844062964710 ~2006
4220439563844087912710 ~2006
422047824710129147792912 ~2009
4220493671844098734310 ~2006
422057402310973492459912 ~2009
4220726183844145236710 ~2006
4220856791844171358310 ~2006
4220866883844173376710 ~2006
4221146711844229342310 ~2006
4221265703844253140710 ~2006
4221368579844273715910 ~2006
42214451273377156101711 ~2008
4221482579844296515910 ~2006
4221516983844303396710 ~2006
42222028613377762288911 ~2008
42225823132533549387911 ~2007
4222595759844519151910 ~2006
4222729103844545820710 ~2006
Exponent Prime Factor Digits Year
42227926193378234095311 ~2008
4223017031844603406310 ~2006
42231062539290833756711 ~2009
42233623913378689912911 ~2008
4223415659844683131910 ~2006
4223572211844714442310 ~2006
4223778203844755640710 ~2006
42239789594223978959111 ~2008
42241184474224118447111 ~2008
422448135722812199327912 ~2010
4224679451844935890310 ~2006
4224967739844993547910 ~2006
42250837212535050232711 ~2007
4225100591845020118310 ~2006
42252058132535123487911 ~2007
4225347239845069447910 ~2006
4225551251845110250310 ~2006
42255556013380444480911 ~2008
42255710993380456879311 ~2008
4225791431845158286310 ~2006
42259631993380770559311 ~2008
422598577937188674855312 ~2010
42263857193381108575311 ~2008
42266790895917350724711 ~2008
42267951012536077060711 ~2007
Home
4.768.925 digits
e-mail
25-05-04