Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4159180583831836116710 ~2006
41592063012495523780711 ~2007
4159289903831857980710 ~2006
4159797599831959519910 ~2006
4159898159831979631910 ~2006
416018503745762035407112 ~2010
41602419616656387137711 ~2008
41603176975824444775911 ~2008
4160554523832110904710 ~2006
4160573099832114619910 ~2006
4160592179832118435910 ~2006
41607435376657189659311 ~2008
4160775071832155014310 ~2006
4160783843832156768710 ~2006
41608438812496506328711 ~2007
4160978051832195610310 ~2006
41611472993328917839311 ~2008
41611495913328919672911 ~2008
4161713819832342763910 ~2006
41617199116658751857711 ~2008
4161795251832359050310 ~2006
4161830951832366190310 ~2006
4161876923832375384710 ~2006
4161959759832391951910 ~2006
4162081103832416220710 ~2006
Exponent Prime Factor Digits Year
4162292363832458472710 ~2006
4162421099832484219910 ~2006
4162530923832506184710 ~2006
4162622423832524484710 ~2006
4162653191832530638310 ~2006
4162698563832539712710 ~2006
4162716851832543370310 ~2006
41627369932497642195911 ~2007
4162934291832586858310 ~2006
41630773013330461840911 ~2008
416325889914155080256712 ~2009
4163324843832664968710 ~2006
4163684303832736860710 ~2006
4163819603832763920710 ~2006
41639240572498354434311 ~2007
41640227812498413668711 ~2007
4164053291832810658310 ~2006
4164061571832812314310 ~2006
4164214031832842806310 ~2006
41642781412498566884711 ~2007
41644335732498660143911 ~2007
41649019212498941152711 ~2007
4164936203832987240710 ~2006
4164962579832992515910 ~2006
4165265963833053192710 ~2006
Exponent Prime Factor Digits Year
4165289543833057908710 ~2006
4165362251833072450310 ~2006
41654487616664718017711 ~2008
4165505303833101060710 ~2006
4165695791833139158310 ~2006
4165724399833144879910 ~2006
4165795223833159044710 ~2006
4166038979833207795910 ~2006
4166071823833214364710 ~2006
41660930935832530330311 ~2008
4166148599833229719910 ~2006
41661607812499696468711 ~2007
4166916839833383367910 ~2006
4166950643833390128710 ~2006
4167813563833562712710 ~2006
4167880019833576003910 ~2006
4168177823833635564710 ~2006
4168242791833648558310 ~2006
41682925012500975500711 ~2007
4168355531833671106310 ~2006
416859774716674390988112 ~2009
4168677203833735440710 ~2006
4168786763833757352710 ~2006
4168845251833769050310 ~2006
4168966751833793350310 ~2006
Exponent Prime Factor Digits Year
4169019623833803924710 ~2006
41692414994169241499111 ~2008
416924415116676976604112 ~2009
4169429651833885930310 ~2006
4169565083833913016710 ~2006
416963462943364200141712 ~2010
4169738399833947679910 ~2006
4170009479834001895910 ~2006
4170054191834010838310 ~2006
4170131159834026231910 ~2006
41703780532502226831911 ~2007
41704550412502273024711 ~2007
4170546491834109298310 ~2006
4170792491834158498310 ~2006
4171203671834240734310 ~2006
41712896532502773791911 ~2007
41714169372502850162311 ~2007
417161011715852118444712 ~2009
41716485775840308007911 ~2008
41716726013337338080911 ~2008
4171750031834350006310 ~2006
4172002151834400430310 ~2006
41721840412503310424711 ~2007
41722270994172227099111 ~2008
4172259683834451936710 ~2006
Home
4.724.182 digits
e-mail
25-04-13