Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1510495223302099044710 ~2003
1510513561906308136710 ~2004
1510525097906315058310 ~2004
1510543337906326002310 ~2004
1510561763302112352710 ~2003
1510583797906350278310 ~2004
1510594223302118844710 ~2003
1510622999302124599910 ~2003
1510644683302128936710 ~2003
15106597391510659739111 ~2004
1510682051302136410310 ~2003
1510723199302144639910 ~2003
1510759091302151818310 ~2003
1510823663302164732710 ~2003
1510922377906553426310 ~2004
1510963739302192747910 ~2003
15110083332417613332911 ~2005
1511038799302207759910 ~2003
15110508431511050843111 ~2004
15110563991511056399111 ~2004
1511062961906637776710 ~2004
15110844891208867591311 ~2004
1511104631302220926310 ~2003
151112180330222436060112 ~2008
1511143979302228795910 ~2003
Exponent Prime Factor Digits Year
15111543192720077774311 ~2005
1511167271302233454310 ~2003
15111787492115650248711 ~2005
1511189411302237882310 ~2003
15111926091208954087311 ~2004
1511208911302241782310 ~2003
15112121513929151592711 ~2005
15112443411208995472911 ~2004
1511277923302255584710 ~2003
1511289023302257804710 ~2003
1511298311302259662310 ~2003
1511313757906788254310 ~2004
1511376539302275307910 ~2003
15113864511209109160911 ~2004
1511426699302285339910 ~2003
1511427479302285495910 ~2003
1511431511302286302310 ~2003
1511465531302293106310 ~2003
1511468459302293691910 ~2003
1511484431302296886310 ~2003
1511574923302314984710 ~2003
15115917892116228504711 ~2005
15116034132418565460911 ~2005
1511644117906986470310 ~2004
1511646293906987775910 ~2004
Exponent Prime Factor Digits Year
1511699291302339858310 ~2003
15117039173628089400911 ~2005
1511715119302343023910 ~2003
15117424393628181853711 ~2005
1511783783302356756710 ~2003
15117974211209437936911 ~2004
1511892383302378476710 ~2003
1512025561907215336710 ~2004
1512058979302411795910 ~2003
1512191339302438267910 ~2003
1512229343302445868710 ~2003
15123372911512337291111 ~2004
1512528359302505671910 ~2003
1512582193907549315910 ~2004
1512583811302516762310 ~2003
1512589703302517940710 ~2003
1512650231302530046310 ~2003
1512661379302532275910 ~2003
15126920235143152878311 ~2006
15126944993630466797711 ~2005
15127206972420353115311 ~2005
1512734999302546999910 ~2003
15127558993630614157711 ~2005
15127658112722978459911 ~2005
1512784319302556863910 ~2003
Exponent Prime Factor Digits Year
1512786419302557283910 ~2003
1512816911302563382310 ~2003
1512824591302564918310 ~2003
1512851891302570378310 ~2003
1512959543302591908710 ~2003
1513004459302600891910 ~2003
1513049243302609848710 ~2003
15130656411210452512911 ~2004
15131848614539554583111 ~2006
1513208831302641766310 ~2003
1513232291302646458310 ~2003
1513286003302657200710 ~2003
1513350983302670196710 ~2003
1513440143302688028710 ~2003
15134526171210762093711 ~2004
1513503791302700758310 ~2003
1513534163302706832710 ~2003
1513572083302714416710 ~2003
1513610531302722106310 ~2003
1513667159302733431910 ~2003
15136784231513678423111 ~2004
1513707971302741594310 ~2003
1513768631302753726310 ~2003
151382398113018886236712 ~2007
1513832279302766455910 ~2003
Home
5.307.017 digits
e-mail
26-01-11