Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1548353771309670754310 ~2003
1548513539309702707910 ~2003
15485250376194100148111 ~2006
1548558503309711700710 ~2003
1548563363309712672710 ~2003
1548571019309714203910 ~2003
154863747110221007308712 ~2007
1548651683309730336710 ~2003
1548753131309750626310 ~2003
15488357592787904366311 ~2005
1548837743309767548710 ~2003
15488377611239070208911 ~2004
1548856871309771374310 ~2003
1548887831309777566310 ~2003
1548996899309799379910 ~2003
15490150011239212000911 ~2004
15490156212478424993711 ~2005
1549072331309814466310 ~2003
1549164983309832996710 ~2003
1549170251309834050310 ~2003
1549173539309834707910 ~2003
1549193939309838787910 ~2003
1549200371309840074310 ~2003
1549212911309842582310 ~2003
1549372283309874456710 ~2003
Exponent Prime Factor Digits Year
15494089573718581496911 ~2005
1549542803309908560710 ~2003
1549572653929743591910 ~2004
1549580699309916139910 ~2003
15495899271239671941711 ~2004
1549622663309924532710 ~2003
1549636163309927232710 ~2003
1549640531309928106310 ~2003
1549658003309931600710 ~2003
1549772123309954424710 ~2003
1549798571309959714310 ~2003
1549852043309970408710 ~2003
1549933439309986687910 ~2003
1549972199309994439910 ~2003
15499734592789952226311 ~2005
1550009063310001812710 ~2003
15500188011240015040911 ~2004
1550180903310036180710 ~2003
1550185739310037147910 ~2003
1550220257930132154310 ~2004
1550301017930180610310 ~2004
15504664936201865972111 ~2006
1550660339310132067910 ~2003
1550665331310133066310 ~2003
1550673203310134640710 ~2003
Exponent Prime Factor Digits Year
1550698811310139762310 ~2003
1550721719310144343910 ~2003
1550726783310145356710 ~2003
1550743739310148747910 ~2003
15508263837754131915111 ~2006
1550836223310167244710 ~2003
1550892659310178531910 ~2003
1550895011310179002310 ~2003
1550903423310180684710 ~2003
1550919059310183811910 ~2003
1550949863310189972710 ~2003
15509617911240769432911 ~2004
155104616924506529470312 ~2007
1551054119310210823910 ~2003
1551067439310213487910 ~2003
1551080339310216067910 ~2003
1551268871310253774310 ~2003
1551324563310264912710 ~2003
1551339599310267919910 ~2003
1551347543310269508710 ~2003
1551352703310270540710 ~2003
1551354263310270852710 ~2003
1551390803310278160710 ~2003
1551440939310288187910 ~2003
1551455831310291166310 ~2003
Exponent Prime Factor Digits Year
1551507563310301512710 ~2003
15515356971241228557711 ~2004
1551566063310313212710 ~2003
1551571937930943162310 ~2004
15516044231551604423111 ~2005
15516381972482621115311 ~2005
1551639539310327907910 ~2003
1551667079310333415910 ~2003
1551708299310341659910 ~2003
1551753023310350604710 ~2003
1551756683310351336710 ~2003
1551816173931089703910 ~2004
1551820043310364008710 ~2003
1551890999310378199910 ~2003
1551904859310380971910 ~2003
1551925811310385162310 ~2003
1552158119310431623910 ~2003
1552166711310433342310 ~2003
1552196759310439351910 ~2003
1552221773931333063910 ~2004
1552232723310446544710 ~2003
1552236773931342063910 ~2004
1552279583310455916710 ~2003
1552379291310475858310 ~2003
1552425401931455240710 ~2004
Home
5.187.277 digits
e-mail
25-11-17