Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1588648343317729668710 ~2003
1588649411317729882310 ~2003
15886519031588651903111 ~2005
1588750811317750162310 ~2003
1588752023317750404710 ~2003
1588820117953292070310 ~2004
1588961039317792207910 ~2003
1588965011317793002310 ~2003
1588974671317794934310 ~2003
1588992659317798531910 ~2003
1589011691317802338310 ~2003
15890163711271213096911 ~2004
1589031397953418838310 ~2004
1589043299317808659910 ~2003
1589052161953431296710 ~2004
15890890271589089027111 ~2005
15890957471589095747111 ~2005
1589128883317825776710 ~2003
1589141243317828248710 ~2003
1589176703317835340710 ~2003
1589180783317836156710 ~2003
15892099879217417924711 ~2006
1589216003317843200710 ~2003
1589248853953549311910 ~2004
1589290151317858030310 ~2003
Exponent Prime Factor Digits Year
1589367959317873591910 ~2003
1589388071317877614310 ~2003
1589395583317879116710 ~2003
1589441411317888282310 ~2003
1589457983317891596710 ~2003
1589473271317894654310 ~2003
15894764871271581189711 ~2004
1589592971317918594310 ~2003
1589641421953784852710 ~2004
1589775217953865130310 ~2004
1589924111317984822310 ~2003
1589940899317988179910 ~2003
1589941751317988350310 ~2003
15899912112543985937711 ~2005
1590001079318000215910 ~2003
15900178572544028571311 ~2005
15900609072544097451311 ~2005
1590126221954075732710 ~2004
1590162179318032435910 ~2003
1590184643318036928710 ~2003
1590222059318044411910 ~2003
1590225443318045088710 ~2003
1590264839318052967910 ~2003
1590289139318057827910 ~2003
1590325091318065018310 ~2003
Exponent Prime Factor Digits Year
1590403043318080608710 ~2003
1590405191318081038310 ~2003
1590564617954338770310 ~2004
15906170898589332280711 ~2006
159068826135313279394312 ~2008
15906963834135810595911 ~2006
1590807863318161572710 ~2003
15908368817317849652711 ~2006
1590844943318168988710 ~2003
1590944471318188894310 ~2003
1591081601954648960710 ~2004
1591177079318235415910 ~2003
1591204619318240923910 ~2003
1591239623318247924710 ~2003
15912898371273031869711 ~2004
1591374371318274874310 ~2003
1591378391318275678310 ~2003
1591379423318275884710 ~2003
1591425971318285194310 ~2003
1591446539318289307910 ~2003
15914471273819473104911 ~2006
1591452911318290582310 ~2003
1591459379318291875910 ~2003
1591524383318304876710 ~2003
15915278092228138932711 ~2005
Exponent Prime Factor Digits Year
1591551779318310355910 ~2003
1591552139318310427910 ~2003
1591632431318326486310 ~2003
1591645691318329138310 ~2003
1591674719318334943910 ~2003
1591710311318342062310 ~2003
1591711571318342314310 ~2003
15917172718913616717711 ~2006
15917295711273383656911 ~2004
15917676493501888827911 ~2005
15918194211273455536911 ~2004
1591850957955110574310 ~2004
1591913159318382631910 ~2003
1591913231318382646310 ~2003
1591934471318386894310 ~2003
1591959851318391970310 ~2003
15919635672547141707311 ~2005
1591965491318393098310 ~2003
1591990199318398039910 ~2003
1592011391318402278310 ~2003
1592034599318406919910 ~2003
1592075519318415103910 ~2003
1592147939318429587910 ~2003
1592155633955293379910 ~2004
1592197391318439478310 ~2003
Home
5.187.277 digits
e-mail
25-11-17