Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1603980317962388190310 ~2004
1603991111320798222310 ~2003
16040304111283224328911 ~2004
16040322116736935286311 ~2006
1604069171320813834310 ~2003
1604076359320815271910 ~2003
1604088911320817782310 ~2003
1604114819320822963910 ~2003
16041269695133206300911 ~2006
16042032592887565866311 ~2005
1604220323320844064710 ~2003
1604223839320844767910 ~2003
1604439299320887859910 ~2003
1604460853962676511910 ~2004
1604493623320898724710 ~2003
1604521739320904347910 ~2003
1604649443320929888710 ~2003
1604691839320938367910 ~2003
1604721533962832919910 ~2004
1604750183320950036710 ~2003
1604860703320972140710 ~2003
1604864819320972963910 ~2003
160489660934344787432712 ~2008
1604922479320984495910 ~2003
1604966003320993200710 ~2003
Exponent Prime Factor Digits Year
1604982083320996416710 ~2003
1604996273962997763910 ~2004
1605056951321011390310 ~2003
1605079319321015863910 ~2003
1605121139321024227910 ~2003
16051220392889219670311 ~2005
16051849071284147925711 ~2004
1605196031321039206310 ~2003
1605252503321050500710 ~2003
1605299159321059831910 ~2003
1605422111321084422310 ~2003
16054360332568697652911 ~2005
1605452993963271795910 ~2004
1605465731321093146310 ~2003
1605482171321096434310 ~2003
1605507539321101507910 ~2003
1605537611321107522310 ~2003
1605548111321109622310 ~2003
160557282114129040824912 ~2007
1605631931321126386310 ~2003
1605643859321128771910 ~2003
1605693191321138638310 ~2003
16056964191284557135311 ~2004
16057069791284565583311 ~2004
1605723263321144652710 ~2003
Exponent Prime Factor Digits Year
16057301511284584120911 ~2004
16057476535138392489711 ~2006
1605788423321157684710 ~2003
1605821159321164231910 ~2003
1605845471321169094310 ~2003
1605928901963557340710 ~2004
1605946739321189347910 ~2003
16060151991284812159311 ~2004
1606016939321203387910 ~2003
16061075271284886021711 ~2004
1606114493963668695910 ~2004
1606244723321248944710 ~2003
16063265932248857230311 ~2005
1606335551321267110310 ~2003
1606355363321271072710 ~2003
1606456619321291323910 ~2003
1606460363321292072710 ~2003
16064624092249047372711 ~2005
1606487273963892363910 ~2004
1606500611321300122310 ~2003
1606535737963921442310 ~2004
1606610339321322067910 ~2003
1606783259321356651910 ~2003
1606797323321359464710 ~2003
1606841063321368212710 ~2003
Exponent Prime Factor Digits Year
1606847717964108630310 ~2004
1606906139321381227910 ~2003
1606937999321387599910 ~2003
16069715591606971559111 ~2005
1606985423321397084710 ~2003
16069930993856783437711 ~2006
1607035883321407176710 ~2003
1607070431321414086310 ~2003
1607144999321428999910 ~2003
1607313083321462616710 ~2003
1607333963321466792710 ~2003
1607419313964451587910 ~2004
1607465339321493067910 ~2003
1607504663321500932710 ~2003
1607546543321509308710 ~2003
1607574599321514919910 ~2003
1607580659321516131910 ~2003
1607612339321522467910 ~2003
1607623271321524654310 ~2003
1607629931321525986310 ~2003
1607669471321533894310 ~2003
1607757383321551476710 ~2003
16078760511286300840911 ~2004
1607884979321576995910 ~2003
1607929811321585962310 ~2003
Home
5.247.179 digits
e-mail
25-12-14