Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
15851021772536163483311 ~2005
1585148759317029751910 ~2003
1585172159317034431910 ~2003
1585188481951113088710 ~2004
1585246499317049299910 ~2003
1585259519317051903910 ~2003
1585279211317055842310 ~2003
1585353719317070743910 ~2003
1585360391317072078310 ~2003
1585367783317073556710 ~2003
1585419971317083994310 ~2003
1585438741951263244710 ~2004
1585511699317102339910 ~2003
15855843172219818043911 ~2005
1585592831317118566310 ~2003
1585649713951389827910 ~2004
15857802372537248379311 ~2005
1585855703317171140710 ~2003
1585915139317183027910 ~2003
1585916771317183354310 ~2003
15859439591585943959111 ~2005
15859576875392256135911 ~2006
15859621876343848748111 ~2006
158599425111419158607312 ~2007
15859956891268796551311 ~2004
Exponent Prime Factor Digits Year
1586008691317201738310 ~2003
1586031071317206214310 ~2003
1586050451317210090310 ~2003
1586051003317210200710 ~2003
158605711922839222513712 ~2007
1586088599317217719910 ~2003
1586105063317221012710 ~2003
1586123621951674172710 ~2004
1586138353951683011910 ~2004
1586140163317228032710 ~2003
1586208083317241616710 ~2003
1586219279317243855910 ~2003
15862514091269001127311 ~2004
1586260103317252020710 ~2003
1586284751317256950310 ~2003
1586339113951803467910 ~2004
1586434511317286902310 ~2003
1586459183317291836710 ~2003
1586491573951894943910 ~2004
1586496251317299250310 ~2003
1586521259317304251910 ~2003
1586529359317305871910 ~2003
1586633197951979918310 ~2004
1586757793952054675910 ~2004
1586781299317356259910 ~2003
Exponent Prime Factor Digits Year
1586821091317364218310 ~2003
1586895851317379170310 ~2003
1586916203317383240710 ~2003
1587001931317400386310 ~2003
1587085163317417032710 ~2003
1587092761952255656710 ~2004
1587171539317434307910 ~2003
1587188651317437730310 ~2003
15872103433809304823311 ~2006
1587223931317444786310 ~2003
1587228911317445782310 ~2003
1587235739317447147910 ~2003
1587268703317453740710 ~2003
15872797371269823789711 ~2004
1587318521952391112710 ~2004
1587373421952424052710 ~2004
1587387083317477416710 ~2003
15874017732539842836911 ~2005
1587423011317484602310 ~2003
15874486938572222942311 ~2006
1587516239317503247910 ~2003
1587528443317505688710 ~2003
1587534659317506931910 ~2003
1587586571317517314310 ~2003
1587663179317532635910 ~2003
Exponent Prime Factor Digits Year
1587680183317536036710 ~2003
1587708263317541652710 ~2003
1587739343317547868710 ~2003
1587770377952662226310 ~2004
15877710711270216856911 ~2004
15878250772222955107911 ~2005
1587841679317568335910 ~2003
1587871751317574350310 ~2003
1587998999317599799910 ~2003
1588081751317616350310 ~2003
1588110221952866132710 ~2004
1588136351317627270310 ~2003
1588156721952894032710 ~2004
1588232339317646467910 ~2003
1588251373952950823910 ~2004
1588265543317653108710 ~2003
1588268471317653694310 ~2003
1588304099317660819910 ~2003
1588356719317671343910 ~2003
15884097172223773603911 ~2005
15884441591588444159111 ~2005
1588449959317689991910 ~2003
1588479413953087647910 ~2004
1588494197953096518310 ~2004
1588573691317714738310 ~2003
Home
5.187.277 digits
e-mail
25-11-17