Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
31961558571917693514311 ~2006
31962447892556995831311 ~2007
31962569272557005541711 ~2007
3196324403639264880710 ~2005
3196357751639271550310 ~2005
3196368359639273671910 ~2005
31964781611917886896711 ~2006
31966546612557323728911 ~2007
3196682039639336407910 ~2005
31967881515114861041711 ~2007
31969828571918189714311 ~2006
3197008583639401716710 ~2005
319720247310231047913712 ~2008
31972297275755013508711 ~2008
3197258219639451643910 ~2005
3197266991639453398310 ~2005
3197457383639491476710 ~2005
3197726183639545236710 ~2005
31978698592558295887311 ~2007
31979588574477142399911 ~2007
3198004343639600868710 ~2005
3198079823639615964710 ~2005
3198372491639674498310 ~2005
3198467243639693448710 ~2005
3198476423639695284710 ~2005
Exponent Prime Factor Digits Year
3198655259639731051910 ~2005
31988573992559085919311 ~2007
3199149983639829996710 ~2005
31993020131919581207911 ~2006
3199436819639887363910 ~2005
3199835711639967142310 ~2005
3199889939639977987910 ~2005
3200412623640082524710 ~2005
3200439563640087912710 ~2005
3200475203640095040710 ~2005
32004958633200495863111 ~2007
3200543579640108715910 ~2005
3200578679640115735910 ~2005
32006513411920390804711 ~2006
3200882039640176407910 ~2005
3201071603640214320710 ~2005
32011632435121861188911 ~2007
3201203891640240778310 ~2005
3201449159640289831910 ~2005
3201578519640315703910 ~2005
3201685139640337027910 ~2005
3201740879640348175910 ~2005
3201757043640351408710 ~2005
32018544195763337954311 ~2008
3201857759640371551910 ~2005
Exponent Prime Factor Digits Year
3201888023640377604710 ~2005
32022691515123630641711 ~2007
3202392359640478471910 ~2005
32024325294483405540711 ~2007
3202602131640520426310 ~2005
3202631123640526224710 ~2005
3202901771640580354310 ~2005
32029071611921744296711 ~2006
3203094599640618919910 ~2005
32031517971921891078311 ~2006
3203153963640630792710 ~2005
3203224163640644832710 ~2005
3203233571640646714310 ~2005
3203360123640672024710 ~2005
32033974792562717983311 ~2007
3203556743640711348710 ~2005
3203576003640715200710 ~2005
3203596439640719287910 ~2005
32036003212562880256911 ~2007
32037133011922227980711 ~2006
3203715743640743148710 ~2005
32038600273203860027111 ~2007
3203893271640778654310 ~2005
32039839635126374340911 ~2007
3204360479640872095910 ~2005
Exponent Prime Factor Digits Year
32044948571922696914311 ~2006
3204499079640899815910 ~2005
3204742259640948451910 ~2005
32047802777691472664911 ~2008
32049090915127854545711 ~2007
3205056251641011250310 ~2005
3205072859641014571910 ~2005
32053150134487441018311 ~2007
320533559910257073916912 ~2008
3205586771641117354310 ~2005
3205593659641118731910 ~2005
3205639043641127808710 ~2005
3205683179641136635910 ~2005
32058280331923496819911 ~2006
3206040179641208035910 ~2005
32061229677694695120911 ~2008
320623771915389941051312 ~2009
32063285331923797119911 ~2006
32066118411923967104711 ~2006
3206870351641374070310 ~2005
3207049739641409947910 ~2005
3207172679641434535910 ~2005
32072071513207207151111 ~2007
320732912912187850690312 ~2008
32073530331924411819911 ~2006
Home
4.768.925 digits
e-mail
25-05-04