Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
31259174775001467963311 ~2007
31260155872500812469711 ~2007
3126087179625217435910 ~2005
31261210815001793729711 ~2007
3126278339625255667910 ~2005
31266037371875962242311 ~2006
3126606071625321214310 ~2005
3126658043625331608710 ~2005
3126845483625369096710 ~2005
312686834313132847040712 ~2008
31270145931876208755911 ~2006
31270767075003322731311 ~2007
3127177043625435408710 ~2005
31272076875003532299311 ~2007
3127641311625528262310 ~2005
31276645035004263204911 ~2007
3127743743625548748710 ~2005
3127857143625571428710 ~2005
3128004023625600804710 ~2005
3128022503625604500710 ~2005
3128038583625607716710 ~2005
3128058023625611604710 ~2005
3128059859625611971910 ~2005
312810552114389285396712 ~2008
3128295011625659002310 ~2005
Exponent Prime Factor Digits Year
31284124312502729944911 ~2007
3128422463625684492710 ~2005
31285578771877134726311 ~2006
3128610911625722182310 ~2005
3128715179625743035910 ~2005
31287267019386180103111 ~2008
31287387774380234287911 ~2007
3128915843625783168710 ~2005
3129005279625801055910 ~2005
3129046223625809244710 ~2005
3129220079625844015910 ~2005
3129414539625882907910 ~2005
3129427811625885562310 ~2005
3129847403625969480710 ~2005
3129862259625972451910 ~2005
31298757371877925442311 ~2006
3129876803625975360710 ~2005
3129884423625976884710 ~2005
31299477195633905894311 ~2007
313007040767609520791312 ~2010
3130080119626016023910 ~2005
3130104179626020835910 ~2005
3130322291626064458310 ~2005
31303278294382458960711 ~2007
3130334111626066822310 ~2005
Exponent Prime Factor Digits Year
3130493699626098739910 ~2005
31305595635008895300911 ~2007
31306640272504531221711 ~2007
3131008511626201702310 ~2005
3131046923626209384710 ~2005
3131068163626213632710 ~2005
3131196791626239358310 ~2005
3131353223626270644710 ~2005
31314622273131462227111 ~2007
3131466311626293262310 ~2005
31316737611879004256711 ~2006
31317750913131775091111 ~2007
3131802731626360546310 ~2005
3131988383626397676710 ~2005
3132005759626401151910 ~2005
3132109391626421878310 ~2005
3132151271626430254310 ~2005
3132168491626433698310 ~2005
3132201179626440235910 ~2005
3132391859626478371910 ~2005
31325899219397769763111 ~2008
31325927811879555668711 ~2006
3132600539626520107910 ~2005
3132643583626528716710 ~2005
3132752351626550470310 ~2005
Exponent Prime Factor Digits Year
31327847574385898659911 ~2007
3133068923626613784710 ~2005
3133129319626625863910 ~2005
31331357233133135723111 ~2007
3133179683626635936710 ~2005
3133413911626682782310 ~2005
31334388075013502091311 ~2007
3133560719626712143910 ~2005
3133783619626756723910 ~2005
31338852771880331166311 ~2006
31339287292507142983311 ~2007
3134115851626823170310 ~2005
31341238571880474314311 ~2006
3134197463626839492710 ~2005
3134570963626914192710 ~2005
313473471112538938844112 ~2008
3134742239626948447910 ~2005
31348432515015749201711 ~2007
3135205043627041008710 ~2005
3135330059627066011910 ~2005
3135387371627077474310 ~2005
3135528983627105796710 ~2005
3135594383627118876710 ~2005
3135753839627150767910 ~2005
3135806123627161224710 ~2005
Home
4.768.925 digits
e-mail
25-05-04