Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1544523257926713954310 ~2004
1544544623308908924710 ~2003
1544561099308912219910 ~2003
1544570903308914180710 ~2003
1544592083308918416710 ~2003
1544649143308929828710 ~2003
1544669363308933872710 ~2003
1544671981926803188710 ~2004
1544686271308937254310 ~2003
1544711543308942308710 ~2003
1544772611308954522310 ~2003
1544827103308965420710 ~2003
1544914523308982904710 ~2003
1544936663308987332710 ~2003
1544954363308990872710 ~2003
1544979539308995907910 ~2003
1545001019309000203910 ~2003
1545043397927026038310 ~2004
15451558193708373965711 ~2005
15451955591545195559111 ~2004
1545293723309058744710 ~2003
1545315059309063011910 ~2003
1545384479309076895910 ~2003
15454656591236372527311 ~2004
15456955492163973768711 ~2005
Exponent Prime Factor Digits Year
1545702881927421728710 ~2004
1545744611309148922310 ~2003
1545749141927449484710 ~2004
1545754943309150988710 ~2003
1545756083309151216710 ~2003
15457696191236615695311 ~2004
1545772751309154550310 ~2003
1545801833927481099910 ~2004
15458031771236642541711 ~2004
1545805451309161090310 ~2003
1545847091309169418310 ~2003
1545850739309170147910 ~2003
15458741511236699320911 ~2004
1545900803309180160710 ~2003
1545988043309197608710 ~2003
15459887293401175203911 ~2005
1546024559309204911910 ~2003
1546025111309205022310 ~2003
154603240917315562980912 ~2007
1546045031309209006310 ~2003
1546055663309211132710 ~2003
15460572291236845783311 ~2004
1546060259309212051910 ~2003
1546080491309216098310 ~2003
1546178737927707242310 ~2004
Exponent Prime Factor Digits Year
1546244891309248978310 ~2003
15462921917422202516911 ~2006
1546302839309260567910 ~2003
1546304891309260978310 ~2003
1546400879309280175910 ~2003
1546489319309297863910 ~2003
1546499183309299836710 ~2003
1546547591309309518310 ~2003
1546548853927929311910 ~2004
1546566779309313355910 ~2003
1546592543309318508710 ~2003
1546605503309321100710 ~2003
1546622663309324532710 ~2003
15467350671237388053711 ~2004
1546738813928043287910 ~2004
1546743959309348791910 ~2003
1546751399309350279910 ~2003
1546761659309352331910 ~2003
1546861091309372218310 ~2003
1546888919309377783910 ~2003
15468930431546893043111 ~2004
1546906643309381328710 ~2003
1546973843309394768710 ~2003
15469855933712765423311 ~2005
1547083981928250388710 ~2004
Exponent Prime Factor Digits Year
1547122751309424550310 ~2003
1547152679309430535910 ~2003
15471626997426380955311 ~2006
1547245151309449030310 ~2003
1547289839309457967910 ~2003
1547355119309471023910 ~2003
1547405663309481132710 ~2003
15474568035261353130311 ~2006
1547471951309494390310 ~2003
1547492339309498467910 ~2003
1547500319309500063910 ~2003
1547550923309510184710 ~2003
1547611679309522335910 ~2003
1547739997928643998310 ~2004
1547749811309549962310 ~2003
1547795783309559156710 ~2003
1547837939309567587910 ~2003
1547881619309576323910 ~2003
15480599211238447936911 ~2004
1548091403309618280710 ~2003
1548169391309633878310 ~2003
1548182159309636431910 ~2003
1548235379309647075910 ~2003
1548239879309647975910 ~2003
1548248357928949014310 ~2004
Home
5.187.277 digits
e-mail
25-11-17