Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
30967163512477373080911 ~2007
3096800159619360031910 ~2005
3096842999619368599910 ~2005
3097240439619448087910 ~2005
30973399011858403940711 ~2006
30975121131858507267911 ~2006
30978317392478265391311 ~2007
30984731713098473171111 ~2007
3098640491619728098310 ~2005
30987492715577748687911 ~2007
30989422219296826663111 ~2008
30990107211859406432711 ~2006
30990515416817913390311 ~2008
3099181643619836328710 ~2005
3099328031619865606310 ~2005
3099450383619890076710 ~2005
3099917939619983587910 ~2005
31000871872480069749711 ~2007
3100218263620043652710 ~2005
31009693731860581623911 ~2006
31011288892480903111311 ~2007
3101184059620236811910 ~2005
3101269739620253947910 ~2005
3101308739620261747910 ~2005
31013167372481053389711 ~2007
Exponent Prime Factor Digits Year
3101351999620270399910 ~2005
3101394539620278907910 ~2005
3101421971620284394310 ~2005
3101492099620298419910 ~2005
3101507099620301419910 ~2005
31016201212481296096911 ~2007
31016544014962647041711 ~2007
3101807903620361580710 ~2005
3101867603620373520710 ~2005
3102039851620407970310 ~2005
3102069563620413912710 ~2005
3102083879620416775910 ~2005
3102085271620417054310 ~2005
310227579712409103188112 ~2008
31023742371861424542311 ~2006
3102481463620496292710 ~2005
3102592763620518552710 ~2005
3102601283620520256710 ~2005
3102685571620537114310 ~2005
3102888011620577602310 ~2005
31028941811861736508711 ~2006
31030412334344257726311 ~2007
3103248611620649722310 ~2005
3103295411620659082310 ~2005
3103352723620670544710 ~2005
Exponent Prime Factor Digits Year
3103388831620677766310 ~2005
31034646411862078784711 ~2006
3103563563620712712710 ~2005
3103629779620725955910 ~2005
3103653491620730698310 ~2005
31036591513103659151111 ~2007
31036753494345145488711 ~2007
3103719743620743948710 ~2005
31038973931862338435911 ~2006
3103975559620795111910 ~2005
3104016431620803286310 ~2005
3104021099620804219910 ~2005
31042528439933609097711 ~2008
3104338283620867656710 ~2005
3104426879620885375910 ~2005
3104454491620890898310 ~2005
3104470679620894135910 ~2005
310449466919868765881712 ~2009
3104615303620923060710 ~2005
3104756771620951354310 ~2005
31049909211862994552711 ~2006
31050152278073039590311 ~2008
3105076619621015323910 ~2005
3105357659621071531910 ~2005
3105512303621102460710 ~2005
Exponent Prime Factor Digits Year
31055577614968892417711 ~2007
31055671211863340272711 ~2006
31057186395590293550311 ~2007
31057733992484618719311 ~2007
3105786923621157384710 ~2005
31060195131863611707911 ~2006
3106123679621224735910 ~2005
310613530171441111923112 ~2010
31061501411863690084711 ~2006
31062075837454898199311 ~2008
3106261523621252304710 ~2005
3106292279621258455910 ~2005
3106473899621294779910 ~2005
31064770972485181677711 ~2007
3106484291621296858310 ~2005
3106595711621319142310 ~2005
3106639199621327839910 ~2005
3106652051621330410310 ~2005
3106708931621341786310 ~2005
31067417331864045039911 ~2006
3106862639621372527910 ~2005
3106878023621375604710 ~2005
3106998971621399794310 ~2005
310715825329828719228912 ~2009
3107169251621433850310 ~2005
Home
4.768.925 digits
e-mail
25-05-04