Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
30885532612470842608911 ~2007
30885801073088580107111 ~2007
3088678811617735762310 ~2005
30887563438030766491911 ~2008
30889290899884573084911 ~2008
3088968191617793638310 ~2005
30890210531853412631911 ~2006
3089125379617825075910 ~2005
3089127971617825594310 ~2005
30892233171853533990311 ~2006
3089302379617860475910 ~2005
3089317019617863403910 ~2005
3089326391617865278310 ~2005
308944543114829338068912 ~2008
30894745611853684736711 ~2006
3089555039617911007910 ~2005
3089616899617923379910 ~2005
30896383731853783023911 ~2006
3089730779617946155910 ~2005
30898296539887454889711 ~2008
3089953943617990788710 ~2005
3090056999618011399910 ~2005
3090144611618028922310 ~2005
3090282983618056596710 ~2005
3090289259618057851910 ~2005
Exponent Prime Factor Digits Year
3090377831618075566310 ~2005
3090488003618097600710 ~2005
3090616103618123220710 ~2005
30906537193090653719111 ~2007
3090808823618161764710 ~2005
3090866171618173234310 ~2005
3090927263618185452710 ~2005
30909813478036551502311 ~2008
3091243223618248644710 ~2005
3091333523618266704710 ~2005
30913830592473106447311 ~2007
30914780419274434123111 ~2008
30914871011854892260711 ~2006
3091631111618326222310 ~2005
3091637291618327458310 ~2005
3091770491618354098310 ~2005
3091921691618384338310 ~2005
3091929419618385883910 ~2005
3091945019618389003910 ~2005
3091961303618392260710 ~2005
30919833433091983343111 ~2007
3092008511618401702310 ~2005
3092117771618423554310 ~2005
3092322659618464531910 ~2005
3092351291618470258310 ~2005
Exponent Prime Factor Digits Year
30925431971855525918311 ~2006
3092596211618519242310 ~2005
3092598623618519724710 ~2005
30926180411855570824711 ~2006
3092646911618529382310 ~2005
30927666712474213336911 ~2007
3092769419618553883910 ~2005
3092873183618574636710 ~2005
3093102599618620519910 ~2005
30931369574949019131311 ~2007
3093151703618630340710 ~2005
30931772531855906351911 ~2006
3093317651618663530310 ~2005
3093425651618685130310 ~2005
3093501419618700283910 ~2005
3093556871618711374310 ~2005
3093574703618714940710 ~2005
3093738611618747722310 ~2005
3093776459618755291910 ~2005
3093791411618758282310 ~2005
3094101239618820247910 ~2005
3094132451618826490310 ~2005
3094213079618842615910 ~2005
3094290911618858182310 ~2005
30943997392475519791311 ~2007
Exponent Prime Factor Digits Year
3094418039618883607910 ~2005
30944930114951188817711 ~2007
3094496543618899308710 ~2005
30947782931856866975911 ~2006
30948174712475853976911 ~2007
30950557011857033420711 ~2006
3095072639619014527910 ~2005
30951417292476113383311 ~2007
3095181059619036211910 ~2005
3095192519619038503910 ~2005
3095295683619059136710 ~2005
3095364143619072828710 ~2005
3095458031619091606310 ~2005
30956045174952967227311 ~2007
30956543771857392626311 ~2006
3095710031619142006310 ~2005
3095738363619147672710 ~2005
3095824643619164928710 ~2005
3095858411619171682310 ~2005
3095881559619176311910 ~2005
30958859531857531571911 ~2006
3095910203619182040710 ~2005
30959450534953512084911 ~2007
3096327683619265536710 ~2005
30965026312477202104911 ~2007
Home
4.768.925 digits
e-mail
25-05-04