Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2992368383598473676710 ~2005
2992440683598488136710 ~2005
29924600771795476046311 ~2006
2992482959598496591910 ~2005
2992516883598503376710 ~2005
2992642151598528430310 ~2005
2992693271598538654310 ~2005
29929285972394342877711 ~2006
29931088012394487040911 ~2006
29931356572394508525711 ~2006
29931713474789074155311 ~2007
2993335223598667044710 ~2005
29936712292394936983311 ~2006
2993817119598763423910 ~2005
2993895731598779146310 ~2005
29939184011796351040711 ~2006
29939920372395193629711 ~2006
2994108563598821712710 ~2005
29942352534191929354311 ~2007
29942374872994237487111 ~2007
2994283823598856764710 ~2005
2994385391598877078310 ~2005
2994532763598906552710 ~2005
2994644519598928903910 ~2005
29947265211796835912711 ~2006
Exponent Prime Factor Digits Year
2994832091598966418310 ~2005
2994973739598994747910 ~2005
2994984743598996948710 ~2005
2995065299599013059910 ~2005
2995451891599090378310 ~2005
29955017811797301068711 ~2006
2995505099599101019910 ~2005
2995542083599108416710 ~2005
29957285572396582845711 ~2006
29957328131797439687911 ~2006
29957584611797455076711 ~2006
2996131163599226232710 ~2005
2996140079599228015910 ~2005
2996212643599242528710 ~2005
2996218919599243783910 ~2005
2996287331599257466310 ~2005
2996445671599289134310 ~2005
2996490083599298016710 ~2005
29965472234794475556911 ~2007
2996606183599321236710 ~2005
2996762651599352530310 ~2005
29968253832996825383111 ~2007
2996826743599365348710 ~2005
2996869079599373815910 ~2005
2996871659599374331910 ~2005
Exponent Prime Factor Digits Year
29968938971798136338311 ~2006
2996990663599398132710 ~2005
29971105134195954718311 ~2007
2997111431599422286310 ~2005
29971483512997148351111 ~2007
2997204971599440994310 ~2005
29972596792397807743311 ~2006
2997270911599454182310 ~2005
29975270211798516212711 ~2006
2997582023599516404710 ~2005
2997589559599517911910 ~2005
2997643079599528615910 ~2005
29976669432997666943111 ~2007
2997985799599597159910 ~2005
2998029011599605802310 ~2005
29980330131798819807911 ~2006
2998073531599614706310 ~2005
2998377719599675543910 ~2005
2998434599599686919910 ~2005
2998687883599737576710 ~2005
2998709123599741824710 ~2005
2998795463599759092710 ~2005
29988134592998813459111 ~2007
2998817903599763580710 ~2005
2998845131599769026310 ~2005
Exponent Prime Factor Digits Year
2998850663599770132710 ~2005
2999018903599803780710 ~2005
2999322251599864450310 ~2005
299937880319196024339312 ~2009
2999458271599891654310 ~2005
2999707643599941528710 ~2005
2999863199599972639910 ~2005
29998942912399915432911 ~2006
29999866731799992003911 ~2006
3000208283600041656710 ~2005
3000217403600043480710 ~2005
30002650637200636151311 ~2008
30003969616600873314311 ~2008
30004612274800737963311 ~2007
3000599183600119836710 ~2005
3000612311600122462310 ~2005
30006195297201486869711 ~2008
3000626339600125267910 ~2005
300099402114404771300912 ~2008
3001046039600209207910 ~2005
3001067351600213470310 ~2005
3001098059600219611910 ~2005
3001161659600232331910 ~2005
30014389971800863398311 ~2006
30014629072401170325711 ~2006
Home
4.768.925 digits
e-mail
25-05-04