Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1267134383253426876710 ~2002
1267137359253427471910 ~2002
1267182503253436500710 ~2002
1267196531253439306310 ~2002
1267203493760322095910 ~2003
1267249301760349580710 ~2003
1267263863253452772710 ~2002
1267320143253464028710 ~2002
1267323203253464640710 ~2002
1267380071253476014310 ~2002
12674539974816325188711 ~2005
1267456499253491299910 ~2002
1267601603253520320710 ~2002
1267641143253528228710 ~2002
1267727771253545554310 ~2002
1267736303253547260710 ~2002
1267750657760650394310 ~2003
1267756571253551314310 ~2002
1267818551253563710310 ~2002
1267903691253580738310 ~2002
1267921019253584203910 ~2002
12679360272028697643311 ~2004
1267953539253590707910 ~2002
1267965431253593086310 ~2002
1267969919253593983910 ~2002
Exponent Prime Factor Digits Year
1268027759253605551910 ~2002
1268045183253609036710 ~2002
1268084159253616831910 ~2002
1268100959253620191910 ~2002
1268138633760883179910 ~2003
1268166023253633204710 ~2002
1268172821760903692710 ~2003
1268181251253636250310 ~2002
1268218177760930906310 ~2003
1268231423253646284710 ~2002
1268265023253653004710 ~2002
1268294603253658920710 ~2002
1268322479253664495910 ~2002
1268323541760994124710 ~2003
1268413261761047956710 ~2003
1268460503253692100710 ~2002
1268472203253694440710 ~2002
1268474279253694855910 ~2002
1268547251253709450310 ~2002
1268598911253719782310 ~2002
12686607972029857275311 ~2004
12686674272283601368711 ~2004
1268733743253746748710 ~2002
1268747891253749578310 ~2002
1268780003253756000710 ~2002
Exponent Prime Factor Digits Year
1268785319253757063910 ~2002
1268887523253777504710 ~2002
1268900357761340214310 ~2003
1268912717761347630310 ~2003
1268978759253795751910 ~2002
1268988023253797604710 ~2002
1269029711253805942310 ~2002
1269057983253811596710 ~2002
12690818232030530916911 ~2004
1269091931253818386310 ~2002
1269092677761455606310 ~2003
1269105263253821052710 ~2002
1269107663253821532710 ~2002
1269131483253826296710 ~2002
1269141143253828228710 ~2002
1269150119253830023910 ~2002
12691651512030664241711 ~2004
1269178763253835752710 ~2002
12691826571015346125711 ~2004
1269249479253849895910 ~2002
1269250061761550036710 ~2003
1269276419253855283910 ~2002
1269282803253856560710 ~2002
1269296783253859356710 ~2002
1269355013761613007910 ~2003
Exponent Prime Factor Digits Year
1269361679253872335910 ~2002
1269411719253882343910 ~2002
1269411971253882394310 ~2002
1269420983253884196710 ~2002
1269442523253888504710 ~2002
1269621911253924382310 ~2002
1269679991253935998310 ~2002
1269726959253945391910 ~2002
1269769043253953808710 ~2002
1269803039253960607910 ~2002
1269877811253975562310 ~2002
1269890177761934106310 ~2003
1269938903253987780710 ~2002
1269943019253988603910 ~2002
1269960121761976072710 ~2003
1269995737761997442310 ~2003
1270014983254002996710 ~2002
1270022639254004527910 ~2002
1270066079254013215910 ~2002
1270078793762047275910 ~2003
12700973573048233656911 ~2005
1270130399254026079910 ~2002
12701723776096827409711 ~2005
1270210979254042195910 ~2002
1270253219254050643910 ~2002
Home
5.307.017 digits
e-mail
26-01-11