Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2415987863483197572710 ~2004
24160055933382407830311 ~2006
2416050671483210134310 ~2004
2416087259483217451910 ~2004
2416204523483240904710 ~2004
2416222559483244511910 ~2004
24163077432416307743111 ~2006
241636144723680342180712 ~2008
2416434959483286991910 ~2004
2416501403483300280710 ~2004
24166521011449991260711 ~2005
2416654211483330842310 ~2004
2416713083483342616710 ~2004
2416900679483380135910 ~2004
2417071031483414206310 ~2004
2417097719483419543910 ~2004
2417206703483441340710 ~2004
2417394503483478900710 ~2004
2417396279483479255910 ~2004
2417518283483503656710 ~2004
24175201371450512082311 ~2005
2417567051483513410310 ~2004
24176874073868299851311 ~2006
2417701463483540292710 ~2004
24177287511934183000911 ~2006
Exponent Prime Factor Digits Year
2417741171483548234310 ~2004
24178092533384932954311 ~2006
2417889959483577991910 ~2004
2417938559483587711910 ~2004
2418080519483616103910 ~2004
24181632611450897956711 ~2005
2418212003483642400710 ~2004
2418321599483664319910 ~2004
2418362339483672467910 ~2004
2418490799483698159910 ~2004
2418599999483719999910 ~2004
24186809935804834383311 ~2007
24186978672418697867111 ~2006
2418699443483739888710 ~2004
24187979817256393943111 ~2007
2418837059483767411910 ~2004
2418839399483767879910 ~2004
2418880511483776102310 ~2004
2418908423483781684710 ~2004
2419132739483826547910 ~2004
24191948811451516928711 ~2005
24192224531451533471911 ~2005
2419316051483863210310 ~2004
2419319531483863906310 ~2004
24193408371451604502311 ~2005
Exponent Prime Factor Digits Year
2419382963483876592710 ~2004
24193873911935509912911 ~2006
2419571183483914236710 ~2004
24195830931451749855911 ~2005
2419599779483919955910 ~2004
24196400091935712007311 ~2006
24196857111935748568911 ~2006
2419705583483941116710 ~2004
2419706351483941270310 ~2004
2419805411483961082310 ~2004
2419836539483967307910 ~2004
2419868411483973682310 ~2004
24200185211452011112711 ~2005
24201255535808301327311 ~2007
2420169071484033814310 ~2004
24203315691936265255311 ~2006
2420369459484073891910 ~2004
24203723411452223404711 ~2005
24203808771452228526311 ~2005
2420524391484104878310 ~2004
2420543843484108768710 ~2004
2420579471484115894310 ~2004
2420619203484123840710 ~2004
2420744159484148831910 ~2004
2420810543484162108710 ~2004
Exponent Prime Factor Digits Year
2420831519484166303910 ~2004
24209382299199565270311 ~2007
2420939399484187879910 ~2004
2420977103484195420710 ~2004
2420979779484195955910 ~2004
2421010139484202027910 ~2004
2421016991484203398310 ~2004
24210512211936840976911 ~2006
24210660613873705697711 ~2007
2421142271484228454310 ~2004
24213166493389843308711 ~2006
24213873771937109901711 ~2006
2421610091484322018310 ~2004
2421704171484340834310 ~2004
24217367775812168264911 ~2007
2421839663484367932710 ~2004
24219003611453140216711 ~2005
2421927671484385534310 ~2004
2421976439484395287910 ~2004
2422032611484406522310 ~2004
2422044899484408979910 ~2004
2422084811484416962310 ~2004
2422109471484421894310 ~2004
24221766135813223871311 ~2007
24222016371937761309711 ~2006
Home
4.888.230 digits
e-mail
25-06-29