Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1659039071331807814310 ~2003
1659048401995429040710 ~2004
1659166451331833290310 ~2003
1659384659331876931910 ~2003
1659391523331878304710 ~2003
1659404113995642467910 ~2004
1659405521995643312710 ~2004
1659444623331888924710 ~2003
1659467819331893563910 ~2003
1659500663331900132710 ~2003
1659563693995738215910 ~2004
1659575891331915178310 ~2003
16596004734978801419111 ~2006
1659609923331921984710 ~2003
1659630503331926100710 ~2003
1659719279331943855910 ~2003
1659722111331944422310 ~2003
1659795491331959098310 ~2003
16597964094979389227111 ~2006
165983070717594205494312 ~2007
1659873419331974683910 ~2003
16599136912987844643911 ~2005
165993871985320850156712 ~2009
1659961223331992244710 ~2003
1659989351331997870310 ~2003
Exponent Prime Factor Digits Year
1659990719331998143910 ~2003
1659993323331998664710 ~2003
166000969113280077528112 ~2007
1660094221996056532710 ~2004
16601636896640654756111 ~2006
1660300871332060174310 ~2003
1660309643332061928710 ~2003
1660380671332076134310 ~2003
16604788912988862003911 ~2005
1660491743332098348710 ~2003
1660492079332098415910 ~2003
1660588463332117692710 ~2003
1660621439332124287910 ~2003
1660660871332132174310 ~2003
16607059972324988395911 ~2005
1660722551332144510310 ~2003
1660751531332150306310 ~2003
1660816511332163302310 ~2003
16608562872989541316711 ~2005
16609097932325273710311 ~2005
1660949993996569995910 ~2004
16609859391328788751311 ~2004
1661036243332207248710 ~2003
1661121491332224298310 ~2003
1661173253996703951910 ~2004
Exponent Prime Factor Digits Year
1661296823332259364710 ~2003
1661303999332260799910 ~2003
16613192414983957723111 ~2006
1661415323332283064710 ~2003
16614235976313409668711 ~2006
1661489783332297956710 ~2003
1661517311332303462310 ~2003
1661526803332305360710 ~2003
1661572043332314408710 ~2003
1661637611332327522310 ~2003
16617510431661751043111 ~2005
1661755811332351162310 ~2003
1661818439332363687910 ~2003
1661849531332369906310 ~2003
1661857523332371504710 ~2003
1661952731332390546310 ~2003
1661973611332394722310 ~2003
16620112074321229138311 ~2006
1662078191332415638310 ~2003
1662083411332416682310 ~2003
1662163571332432714310 ~2003
1662219983332443996710 ~2003
16623005479641343172711 ~2007
1662324743332464948710 ~2003
16623307491329864599311 ~2005
Exponent Prime Factor Digits Year
16623418311329873464911 ~2005
1662415379332483075910 ~2003
1662420299332484059910 ~2003
1662549803332509960710 ~2003
1662564731332512946310 ~2003
1662565799332513159910 ~2003
16626065991330085279311 ~2005
1662658163332531632710 ~2003
16626632874322924546311 ~2006
1662697511332539502310 ~2003
1662745079332549015910 ~2003
16628288231662828823111 ~2005
16629386871330350949711 ~2005
1662972299332594459910 ~2003
1663002983332600596710 ~2003
1663028651332605730310 ~2003
1663035791332607158310 ~2003
1663087463332617492710 ~2003
1663131443332626288710 ~2003
1663222859332644571910 ~2003
1663257839332651567910 ~2003
1663393871332678774310 ~2003
1663399511332679902310 ~2003
16634209616320999651911 ~2006
1663439861998063916710 ~2004
Home
5.187.277 digits
e-mail
25-11-17