Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2943026843588605368710 ~2005
2943089459588617891910 ~2005
29430959931765857595911 ~2006
29431033492354482679311 ~2006
29432066211765923972711 ~2006
29433113771765986826311 ~2006
2943458543588691708710 ~2005
29434973272354797861711 ~2006
2943669719588733943910 ~2005
29437532037653758327911 ~2008
2943880763588776152710 ~2005
29439286571766357194311 ~2006
29440255372355220429711 ~2006
2944037039588807407910 ~2005
2944097759588819551910 ~2005
29442523872944252387111 ~2007
2944356839588871367910 ~2005
2944669391588933878310 ~2005
2944782371588956474310 ~2005
2944912259588982451910 ~2005
29449135931766948155911 ~2006
29449185912944918591111 ~2007
2944923419588984683910 ~2005
29451204611767072276711 ~2006
2945212811589042562310 ~2005
Exponent Prime Factor Digits Year
294527212955960170451112 ~2010
2945373971589074794310 ~2005
29454357072945435707111 ~2007
29454469571767268174311 ~2006
2945467559589093511910 ~2005
2945469671589093934310 ~2005
2945508971589101794310 ~2005
29455281412356422512911 ~2006
29457211612356576928911 ~2006
29459574112356765928911 ~2006
2945960123589192024710 ~2005
2946149711589229942310 ~2005
2946162911589232582310 ~2005
2946321299589264259910 ~2005
29464727512357178200911 ~2006
2946723023589344604710 ~2005
29467492931768049575911 ~2006
2946807119589361423910 ~2005
2946912071589382414310 ~2005
2946978491589395698310 ~2005
29472210018841663003111 ~2008
2947362923589472584710 ~2005
2947471223589494244710 ~2005
2947598243589519648710 ~2005
29476129571768567774311 ~2006
Exponent Prime Factor Digits Year
2947626359589525271910 ~2005
2947679279589535855910 ~2005
2947720883589544176710 ~2005
29477352011768641120711 ~2006
2948095571589619114310 ~2005
2948140511589628102310 ~2005
2948233979589646795910 ~2005
29484044212358723536911 ~2006
2948584403589716880710 ~2005
2948706011589741202310 ~2005
294871202918282014579912 ~2009
29487451938846235579111 ~2008
2948755703589751140710 ~2005
29487929712948792971111 ~2007
2948798159589759631910 ~2005
2948813051589762610310 ~2005
2948870591589774118310 ~2005
2948898791589779758310 ~2005
29489486771769369206311 ~2006
2949067991589813598310 ~2005
29491052834718568452911 ~2007
2949249059589849811910 ~2005
2949483611589896722310 ~2005
29495061172359604893711 ~2006
2949506711589901342310 ~2005
Exponent Prime Factor Digits Year
2949563399589912679910 ~2005
2949628631589925726310 ~2005
29497208272359776661711 ~2006
2949747491589949498310 ~2005
2949876071589975214310 ~2005
29498792774719806843311 ~2007
2949893651589978730310 ~2005
29498988011769939280711 ~2006
2949959651589991930310 ~2005
2950062539590012507910 ~2005
2950126871590025374310 ~2005
29501375211770082512711 ~2006
295021264737762721881712 ~2009
29503169872360253589711 ~2006
2950327031590065406310 ~2005
29503332371770199942311 ~2006
2950460531590092106310 ~2005
2950595891590119178310 ~2005
2950620131590124026310 ~2005
2950832543590166508710 ~2005
29508795715311583227911 ~2007
29509926011770595560711 ~2006
29510440992951044099111 ~2007
2951119859590223971910 ~2005
2951241959590248391910 ~2005
Home
4.768.925 digits
e-mail
25-05-04