Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2700334139540066827910 ~2005
27003709211620222552711 ~2006
2700429503540085900710 ~2005
2700440219540088043910 ~2005
27006037011620362220711 ~2006
27006396495941407227911 ~2007
2700776951540155390310 ~2005
27008741776482098024911 ~2007
27009420371620565222311 ~2006
2700971219540194243910 ~2005
2700983591540196718310 ~2005
2701051499540210299910 ~2005
2701124831540224966310 ~2005
2701207199540241439910 ~2005
2701254203540250840710 ~2005
2701401803540280360710 ~2005
2701591619540318323910 ~2005
27015947832701594783111 ~2006
2701607543540321508710 ~2005
27016941292161355303311 ~2006
270173386311347282224712 ~2008
27018312611621098756711 ~2006
2701957931540391586310 ~2005
2702101211540420242310 ~2005
2702180303540436060710 ~2005
Exponent Prime Factor Digits Year
27023287571621397254311 ~2006
27023399531621403971911 ~2006
27023717331621423039911 ~2006
2702432363540486472710 ~2005
2702447651540489530310 ~2005
2702479583540495916710 ~2005
2702555759540511151910 ~2005
2702559599540511919910 ~2005
2702563691540512738310 ~2005
2702611199540522239910 ~2005
27026837272162146981711 ~2006
270275164129730268051112 ~2009
270275652728649219186312 ~2009
27028986474865217564711 ~2007
27029424412162353952911 ~2006
2702951939540590387910 ~2005
2703007883540601576710 ~2005
2703023639540604727910 ~2005
2703169019540633803910 ~2005
2703180503540636100710 ~2005
2703253463540650692710 ~2005
27032847611621970856711 ~2006
2703415283540683056710 ~2005
2703453023540690604710 ~2005
2703460223540692044710 ~2005
Exponent Prime Factor Digits Year
2703528671540705734310 ~2005
2703632411540726482310 ~2005
270380499145423923848912 ~2009
27038101331622286079911 ~2006
2703933143540786628710 ~2005
2704088591540817718310 ~2005
2704409639540881927910 ~2005
27044199611622651976711 ~2006
27044273872163541909711 ~2006
27045369772163629581711 ~2006
2704648631540929726310 ~2005
2704692251540938450310 ~2005
27048566476491655952911 ~2007
2704942763540988552710 ~2005
2705016791541003358310 ~2005
27050376412164030112911 ~2006
27051564292164125143311 ~2006
2705157551541031510310 ~2005
27052263611623135816711 ~2006
2705239079541047815910 ~2005
27052514692164201175311 ~2006
2705339303541067860710 ~2005
270542699315150391160912 ~2008
2705458499541091699910 ~2005
2705464043541092808710 ~2005
Exponent Prime Factor Digits Year
27054699293787657900711 ~2007
2705529839541105967910 ~2005
2705576543541115308710 ~2005
2705711243541142248710 ~2005
2705716151541143230310 ~2005
2705804879541160975910 ~2005
2705868239541173647910 ~2005
27058738371623524302311 ~2006
27060333898659306844911 ~2008
2706043559541208711910 ~2005
27060497415953309430311 ~2007
270607775332472933036112 ~2009
2706081239541216247910 ~2005
27061466092164917287311 ~2006
2706239219541247843910 ~2005
2706259463541251892710 ~2005
270626629115155091229712 ~2008
27063294011623797640711 ~2006
27065376412165230112911 ~2006
27065652171623939130311 ~2006
2706604403541320880710 ~2005
2706633899541326779910 ~2005
27066385312165310824911 ~2006
2706664739541332947910 ~2005
2706672203541334440710 ~2005
Home
4.724.182 digits
e-mail
25-04-13