Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2951336039590267207910 ~2005
29513668612361093488911 ~2006
2951377931590275586310 ~2005
2951501279590300255910 ~2005
29515377611770922656711 ~2006
29516963275313053388711 ~2007
2951722391590344478310 ~2005
2951911139590382227910 ~2005
2951948843590389768710 ~2005
2951960111590392022310 ~2005
29520409131771224547911 ~2006
29522436892361794951311 ~2006
2952300551590460110310 ~2005
29525560034724089604911 ~2007
2952611411590522282310 ~2005
29526718814724275009711 ~2007
29527340171771640410311 ~2006
29527443297086586389711 ~2008
29527994331771679659911 ~2006
2952905951590581190310 ~2005
29529297112362343768911 ~2006
2952975299590595059910 ~2005
29531757171771905430311 ~2006
2953210919590642183910 ~2005
29533756795316076222311 ~2007
Exponent Prime Factor Digits Year
2953442603590688520710 ~2005
2953592963590718592710 ~2005
2953655363590731072710 ~2005
2953683059590736611910 ~2005
29537588832953758883111 ~2007
2953884803590776960710 ~2005
29538865312363109224911 ~2006
29540987092363278967311 ~2006
29541681011772500860711 ~2006
29541836272363346901711 ~2006
2954236751590847350310 ~2005
295432247923634579832112 ~2009
29543815371772628922311 ~2006
295450513954362894557712 ~2010
2954516423590903284710 ~2005
2954547311590909462310 ~2005
295473025711227974976712 ~2008
2955101291591020258310 ~2005
29552174931773130495911 ~2006
2955293051591058610310 ~2005
2955336563591067312710 ~2005
29555747572364459805711 ~2006
2955674231591134846310 ~2005
2955696851591139370310 ~2005
2955961331591192266310 ~2005
Exponent Prime Factor Digits Year
2955978383591195676710 ~2005
2956031891591206378310 ~2005
2956067879591213575910 ~2005
2956176551591235310310 ~2005
2956347743591269548710 ~2005
2956515251591303050310 ~2005
2956517699591303539910 ~2005
2956686431591337286310 ~2005
29567038571774022314311 ~2006
2956805459591361091910 ~2005
2956869011591373802310 ~2005
29568736494139623108711 ~2007
2957172059591434411910 ~2005
2957186471591437294310 ~2005
2957253059591450611910 ~2005
2957263931591452786310 ~2005
2957365223591473044710 ~2005
2957385023591477004710 ~2005
2957516291591503258310 ~2005
2957584379591516875910 ~2005
2957585243591517048710 ~2005
2957596331591519266310 ~2005
2957715179591543035910 ~2005
29580323211774819392711 ~2006
2958035891591607178310 ~2005
Exponent Prime Factor Digits Year
29582391074733182571311 ~2007
295849265363903441304912 ~2010
29585067137100416111311 ~2008
29585423572366833885711 ~2006
2958759431591751886310 ~2005
2958844079591768815910 ~2005
2958866699591773339910 ~2005
2958871379591774275910 ~2005
29590330811775419848711 ~2006
29590407795326273402311 ~2007
2959058099591811619910 ~2005
2959311083591862216710 ~2005
29594803936510856864711 ~2008
2959551863591910372710 ~2005
2959805363591961072710 ~2005
2959830119591966023910 ~2005
2959965791591993158310 ~2005
296005758710064195795912 ~2008
2960193191592038638310 ~2005
2960323979592064795910 ~2005
2960327483592065496710 ~2005
2960559359592111871910 ~2005
2960617199592123439910 ~2005
2960705171592141034310 ~2005
29608124331776487459911 ~2006
Home
4.768.925 digits
e-mail
25-05-04