Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1239077783247815556710 ~2002
1239088751247817750310 ~2002
1239103499247820699910 ~2002
1239190921743514552710 ~2003
1239221831247844366310 ~2002
1239238753743543251910 ~2003
1239264479247852895910 ~2002
1239305161743583096710 ~2003
1239325259247865051910 ~2002
1239330017991464013710 ~2004
1239350471247870094310 ~2002
1239350663247870132710 ~2002
1239365903247873180710 ~2002
1239380339247876067910 ~2002
1239388343247877668710 ~2002
1239430117743658070310 ~2003
1239436631247887326310 ~2002
1239460679247892135910 ~2002
1239502937991602349710 ~2004
1239547091247909418310 ~2002
1239669731247933946310 ~2002
12396773993966967676911 ~2005
1239704237743822542310 ~2003
1239706379991765103310 ~2004
1239767051247953410310 ~2002
Exponent Prime Factor Digits Year
1239769631247953926310 ~2002
1239911639247982327910 ~2002
1239961013743976607910 ~2003
1239983483247996696710 ~2002
12400275191240027519111 ~2004
12400363131736050838311 ~2004
12400470417688291654311 ~2006
1240050503248010100710 ~2002
1240071671248014334310 ~2002
12401001531736140214311 ~2004
1240106017744063610310 ~2003
1240122263248024452710 ~2002
1240136951248027390310 ~2002
1240176251248035250310 ~2002
12402192191240219219111 ~2004
1240229273744137563910 ~2003
12403188015705466484711 ~2005
1240348121744208872710 ~2003
1240387979248077595910 ~2002
1240397771248079554310 ~2002
1240474643248094928710 ~2002
12404961891736694664711 ~2004
1240509311248101862310 ~2002
1240511113744306667910 ~2003
1240528511992422808910 ~2004
Exponent Prime Factor Digits Year
1240534859248106971910 ~2002
1240535651248107130310 ~2002
1240545563248109112710 ~2002
12405539111984886257711 ~2004
1240585103248117020710 ~2002
1240612897744367738310 ~2003
12406366272233145928711 ~2004
1240639919248127983910 ~2002
1240691357744414814310 ~2003
1240719743248143948710 ~2002
1240739459248147891910 ~2002
1240759511248151902310 ~2002
1240824587992659669710 ~2004
1240837583248167516710 ~2002
1240913171248182634310 ~2002
1240935973744561583910 ~2003
1240949441744569664710 ~2003
1240960991248192198310 ~2002
12409849031985575844911 ~2004
1240992611992794088910 ~2004
1241024243248204848710 ~2002
1241044331248208866310 ~2002
1241090113744654067910 ~2003
1241112083248222416710 ~2002
1241193313744715987910 ~2003
Exponent Prime Factor Digits Year
1241258279248251655910 ~2002
1241325443248265088710 ~2002
1241349731248269946310 ~2002
124135810114896297212112 ~2006
1241378531248275706310 ~2002
1241394491248278898310 ~2002
12413984398938068760911 ~2006
1241408939248281787910 ~2002
1241467499248293499910 ~2002
1241474771248294954310 ~2002
1241487671248297534310 ~2002
1241500919248300183910 ~2002
12415487332979716959311 ~2005
1241615051993292040910 ~2004
1241647817744988690310 ~2003
1241690533745014319910 ~2003
124169770721108861019112 ~2007
124170308332780961391312 ~2007
1241727701993382160910 ~2004
1241754131248350826310 ~2002
1241757743248351548710 ~2002
12417910211986865633711 ~2004
1241806177745083706310 ~2003
1241832563248366512710 ~2002
1241893379248378675910 ~2002
Home
5.307.017 digits
e-mail
26-01-11