Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2903846651580769330310 ~2005
2903885483580777096710 ~2005
290394465715681301147912 ~2008
2904025079580805015910 ~2005
2904194459580838891910 ~2005
2904203051580840610310 ~2005
29042548634646807780911 ~2007
2904327971580865594310 ~2005
2904373163580874632710 ~2005
2904738359580947671910 ~2005
2904759479580951895910 ~2005
29047788611742867316711 ~2006
2904805643580961128710 ~2005
29048555931742913355911 ~2006
2904861611580972322310 ~2005
2904933719580986743910 ~2005
2905008779581001755910 ~2005
2905097543581019508710 ~2005
29051189411743071364711 ~2006
2905264643581052928710 ~2005
29053340531743200431911 ~2006
2905346519581069303910 ~2005
29055359334067750306311 ~2007
2905561331581112266310 ~2005
29056637931743398275911 ~2006
Exponent Prime Factor Digits Year
2905686599581137319910 ~2005
2905702931581140586310 ~2005
2905714391581142878310 ~2005
2905732019581146403910 ~2005
2905778339581155667910 ~2005
2905947851581189570310 ~2005
2905982603581196520710 ~2005
2906016671581203334310 ~2005
2906149511581229902310 ~2005
29061638571743698314311 ~2006
2906192651581238530310 ~2005
2906219111581243822310 ~2005
2906290979581258195910 ~2005
29063970171743838210311 ~2006
2906409503581281900710 ~2005
2906424011581284802310 ~2005
2906522819581304563910 ~2005
2906611139581322227910 ~2005
2906710811581342162310 ~2005
29067786912906778691111 ~2007
2906831579581366315910 ~2005
2906978219581395643910 ~2005
2906992811581398562310 ~2005
29070589498721176847111 ~2008
290712153713954183377712 ~2008
Exponent Prime Factor Digits Year
2907230531581446106310 ~2005
2907251423581450284710 ~2005
29073306592325864527311 ~2006
2907446351581489270310 ~2005
2907678671581535734310 ~2005
2907816371581563274310 ~2005
2907827843581565568710 ~2005
29079769192326381535311 ~2006
29079934192326394735311 ~2006
2908166003581633200710 ~2005
2908184231581636846310 ~2005
2908350383581670076710 ~2005
2908603583581720716710 ~2005
29088213432908821343111 ~2007
29088885112327110808911 ~2006
2908891151581778230310 ~2005
2908906463581781292710 ~2005
29089233075236061952711 ~2007
29090255211745415312711 ~2006
2909170403581834080710 ~2005
29092607272327408581711 ~2006
29093335279891733991911 ~2008
2909353571581870714310 ~2005
29093655531745619331911 ~2006
2909375939581875187910 ~2005
Exponent Prime Factor Digits Year
2909432231581886446310 ~2005
2909682683581936536710 ~2005
29096901174073566163911 ~2007
2909746439581949287910 ~2005
2910083531582016706310 ~2005
2910105059582021011910 ~2005
2910131291582026258310 ~2005
2910141791582028358310 ~2005
2910191723582038344710 ~2005
2910216191582043238310 ~2005
2910271139582054227910 ~2005
2910517871582103574310 ~2005
2910581603582116320710 ~2005
29106147472328491797711 ~2006
2910668951582133790310 ~2005
29107055571746423334311 ~2006
2910802343582160468710 ~2005
2910987263582197452710 ~2005
29110601331746636079911 ~2006
2911229963582245992710 ~2005
29112404211746744252711 ~2006
291128701348327364415912 ~2010
2911612019582322403910 ~2005
29116855072329348405711 ~2006
2911854551582370910310 ~2005
Home
4.768.925 digits
e-mail
25-05-04